fos

OPTIMAL SYSTEMS

Software Documentation
enaio® server-api

Version 8.50

optimal-systems.de Software fiir Macher.

enaio® server-api enaio®

All software products as well as all related extension programs and additional functions are registered
and/or in-use trademarks of OPTIMAL SYSTEMS GmbH, Berlin or its subsidiaries. They may be used
only with a valid licensing agreement. The software as well as related documentation are protected by
German and international copyright law. Unauthorized duplication and sales is plagiarism and subject
to criminal prosecution. All rights reserved, including reproduction, transmission, translation, and
storage with/on all kinds of media. For all preconfigured test scenarios or demo presentations: All
company and person names which occur in examples (screenshots) are fictional. Any resemblance to
existing companies or persons is purely coincidental and unintentional.

Copyright 1992 — 2017 by OPTIMAL SYSTEMS GmbH

11.04.2017
Version 8.50

enaio® Page ii

enaio® server-api enaio®

Contents

CONLENTS ... s i
INEFOTUCTION ...t 4
0 TSR 4
INEErface LIDIAIIESc.cviiiieccie e 5
Realization of Archive INtegration............cocovviiiiiieceieessess s 6
TESE OPLIONS. ...ttt s 7
GIOSSAIY ...t s 7
enaio® Server APl ENGINE DIrECLOIY.......ociiieiiieirieieeeeesie et 9
enaio® Server APl Engine DOCUMENTAtION ... 11
Subscription Engine (Namespace abn) ..o 11
ADO Database Engine (Namespace ad0)........ccovverererrieereneeneseneseeseeesesenees 29
Convert Enging (NameSPaCE CNV)c.eviveirieeieieereeesieeesiee s sesne e 31
DMS Engine (Namespace dMS)......cccvcevreierieeisiensieesestesesieesssesessesesessessssenenns 38
Medical Engine (Namespace Med)..........ccvvvervreiirieinriseinseesee e esens 125
MNG Engine (Namespace MNQ)ceovvveerrreririeierieesiseesieeseeesessesesseessssesenes 150
OCR ENgine (NamESPACE OCK) ...c.vcveviveriiereisieesieteseeseressesessesesessesessesessssesessesens 163
Standard Engine (Namespace Std).........ccccevvveririeiinieieiseieseee e 164
Full-Text Engine (NameSPace VEX)c..ccvivvveerieeriiiensieeneseesieesssiessae e s 187
Workflow Engine (Namespace WIM) ..o 193
COTE SBIVICES ...ttt bbbttt 299
OXSUISPT ittt bbb bbbt s be bbb b 337
General DESCHIPLION.......covieirieeieeie e snene s 337
0T [] TSR 338
Data SIIUCTUIES ..ot 352
Class HIBFAICHYcoiviiiiceiccs ettt 393
1T 1= SR 395

enaio® Page iii

enaio® server-api ‘ enaio®

Introduction

enaio® is a powerful document management, workflow, and archiving system. A special feature of the
product line is that it is flexibly configurable and that, thanks to many interfaces, it allows to integrate
other systems at different points.

The functions provided by enaio® Server API will be described in detail in this document. The
document serves as a functional reference model. Further information about the structure of enaio®
and the various components can be found in the corresponding documentation.

The enaio® server is a runtime environment for various engines in the archive, DMS, and workflow
environments. Thus, the server fullfils different tasks concerning organizational information flow.
These tasks include for example capturing, administrating and processing documents including their
index data, full text search, workflow management, archiving and many other functions.

Engine
An engine — also called executor — is loaded by the application server and can therefore execute jobs.

Every executor manages one or more namespaces in which server jobs are organized. The following
engines are provided by default:

DMS Engine: for search and manipulation of index and document data

Workflow engine: Processing and managing workflow processes and models

Standard engine: collection of various functions for archiving, and file and document transfer
Full text engine: full text engine queries (Microsoft SQL full text server, Convera RetrievalWare)
OCR engine: optical character recognition that converts images or scanned receipts
Subscription engine: notification functions for changes to the document inventory

Core services: initialization, licensing, and session management

w W W W W W W W

Data piping allows accessing the database through the server interface with an internal format or as
an Active Directory object

Server Job

Jobs are tasks which are executed by the server and which represent a specific collection, manipulation,
or control function. Therefore, jobs can be compared to features. A server job has the following general
structure:

§ Job name: the name consists of a namespace — in which the job is implemented — and the job
description. (e.g. dms.XMLInsert)

§8 Input parameters

8 Input file list: if files have to be transferred to the job, the absolute path and name of the file are
transferred here.

§ Output parameters
§ Output file list: if the job returns files, the absolute path and name of the file are transferred here.

§ Return value: Every job generates a return value. In case of success it is always '0'. Otherwise a
return value describing the nature of the possible error will be returned.

enaio® Page 4

enaio® server-api enaio®

To execute a job, a session must be created between the querying instance - also called client - and the
server. It consists of a connection via a technical protocol (e.g. TCP) and different information about
this connection, e.g. authentication, station, and license data. The XML-RPC protocol was placed on
top of the technical protocol for building search requests and processing results. This protocol dictates
how search requests, parameters and results are presented. The communication process between client
and server follows the following schema:

§ Establishing a TCP connection with the enaio® server
§ Initializing a session with respective parameters

§ Job calls and receipt of response data

§ Termination of the connection

The client executes a job by wrapping the job name and the respective parameters in XML and sending
them to the server. The client will then wait for a response. The server kernel interprets the received
data. It is determined which engine can execute the job and data is transferred to the job's queue
mechanism for processing. The result is then transferred by the engine to the client through the server
kernel. Jobs which are provided by the engines are described below.

The XML-RPC format is designed to transfer all parameters within an XML structure with the
respective types. For file transfer (i.e. binary data) it is therefore necessary to convert the files with
MIME encoding into strings. This deviation from the standard is due to performance and memory
usage. Files are transferred separately as TCP streams after sending the job parameters. Some
parameters, XML structures in particular, are converted into the MIME format for transfer, to remove
control characters, if necessary.

Interface Libraries

To make the internal communication independent from technical conditions, several ways can be used
to use the protocol without extensive knowledge of the communication sequence. For this purpose
classes and libraries exist which are provided by OPTIMAL SYSTEMS.

These are:

8§ COM - interface of the communication library oxsvrspt for multi-thread environments
§ Java interface for communication with the enaio® server

§ COM - interface of the communication library oxmljsc

8 Other libraries which encapsule server calls

The structure for using the interfaces is principally the same. After initializing and connecting to the
application server, job objects are created which receive input parameters and input files. After the
execution, output parameters and output files can be read from the object. Furthermore an error stack
is provided which can contain possible technical error messages. Input and output lists are depicted as
hash lists, arrays or other objects, depending on the used programming language.

Primarily the oxsvrspt.dll library should be used. Detailed information about using libraries can be
found in the section 'OxSvrSpt.'

Java Interface

The Java interface libraries provided by OPTIMAL SYSTEMS support the creation of client
applications that communicate with the enaio® server. In total there are three libraries:

§ Application server proxy
§ Java DRT Layer (JDL)
enaio® Page 5

enaio® server-api enaio®
8 Java Object Layer

The three interface libraries can be used in different application areas and represent different
abstraction layers regarding the OS system. While the application server proxy and the JDL are two
dependent layers in the communication with the enaio® server, the Java Object Layer permits an
object-oriented way of working with input and output data of the jobs. Complete documentation of
the Java interface can be obtained separately.

Realization of Archive Integration

General

The goal of archive integration for various applications is to file documents, which contain structure
and index information, in the DMS, to search them in the data record, to download and to delete
them. These scenarios will be illustrated in the following examples. As already mentioned, functions
are carried out by calling server jobs which have been implemented in the DMS engine and in the
standard DMS engine.

A brief introduction to the structure of the system. Further information can be found in the enaio®
administration manuals. enaio® uses the following DMS objects to depict information structures:

§ Cabinet:

The term 'cabinet’ was chosen as a counterpart to a file cabinet. A cabinet contains folders, registers
and documents. It is the top level in the DMS. All other DMS objects can only exist as sub-objects
of a cabinet. A cabinet's only attribute is its name.

§ Folder:

Folders are described by index data and are containers for underlying objects. They can be
compared to folders at root level in the file system. There is only one folder type for each cabinet.

§ Register:

Registers are used to create a more detailed information structure. Multiple register types which
differ according to the structure of the index data can coexist in each cabinet.

§ Documents:

Documents not only have index data but are also linked to document files. Every document type
has the property of a main type which indicates whether the linked files are images, Windows
source documents or other file types. The enaio® client behaves differently while capturing and
displaying documents depending on the main type.

The classes of folders, registers and documents are called object types. A customer folder or an invoice
type are for example an object type. All instances of a class, i.e. the individual folders or receipts have
the same indexing fields. For documents the object type also determines the main type. The structure
of the index data is dictated by the object model. For each object type, a number of fields can be
defined which are used for indexing and searching.

In the subsequent part, documents, registers and folders are called objects, unless a more detailed
specification is necessary. Every object is indicated by index data and so-called basic parameters. Basic
parameters area automatically assigned by the system and are used for internal management of objects.
They contain information on the creator of an object, its object ID, modification data etc.

Every object in the DMS is uniquely described by its object type and object ID. These are two numbers
which are uniguely combined. For most jobs, object type and object ID are expected as input
parameters.

enaio® Page 6

enaio® server-api enaio®

A search which is based on search parameters such as index data and basic parameters will determine
objects for further processing. Further queries can be carried out with the retrieved object IDs and
object types or the document files can be downloaded.

During an import, the called application dictates index data and document files and new objects are
thereupon created in the system.

Scenarios and their Jobs
Below you can find a short description of the jobs that are necessary for archive integration.

Create session: krn.SessionAttach

User login: krn.SessionLogin

Read object definition: dms.GetObjDef
Search by folders, registers, documents: dms.GetResultList

Download document: std.StorelnCacheByID

Insert objects: dms.XMLInsert
Delete object: dms.XMLDelete

Close session: krn.SessionLogout

w W W W W W W W

Test Options

Test Application axlabjobs.exe

For testing individual jobs of the enaio® server and its engines, OPTIMAL SYSTEMS provides the
application axlabjobs.exe. Jobs can be executed with any parameter an unlimited number of times.
Use a Connect string to specify to which server the TestLab will connect. It is possible to work with a
great number of TestLabs on one server to run performance tests. The program is installed by default
to the server directory. The reference to each job contains information about which parameters need to
be specified for the test program.

You can use enaio® enterprise-manager to monitor job calls. There, you can specify computers as well
as jobs which have to be monitored. Files which are sent along with jobs can also be accessed through a
temporary directory.

The functions for monitoring jobs can be found in enaio® enterprise-manager in the 'Extended
Administration/Monitoring' area.

Glossary

This section offers explanations for some terms used in the documentation of server jobs.

Cache directory — directory below the server path (..\server\CACHE), which is used to store archived
documents read by archiving media for further access, so that the next user does not have to spend a
lot of time accessing archiving media again.

Flag — is a parameter which enables or indicates a specific property.

OSTEMP directory — is a directory in the environment variable OSTEMP and is used by some jobs for
interim storage or the creation of temporary files.

Work directory — is a directory below the server path (..\server\WORK), which is used to file all
documents which have not been archived. Due to performance reasons, documents are filed in this
directory and not in the database.

enaio® Page 7

enaio® server-api enaio®

Parameters and return values which are enclosed in square brackets '[Parameter]’ are optional
parameters. If they are not needed, these parameters do not have to be indicated when a job is called.

enaio® Page 8

enaio® server-api

enalo® Server API Engine
Directory

enaio®

Engine Description Areas

Subscription (abn) Setup and control of subscriptions used to
notify a change to DMS objects

ADO database (ado) Access to the database

Convert (cnv) Conversion and access to image files

DMS (dms) Searching and editing of index data, DMS XML import
objects, relations and portfolios XML export (search)

Security system
Relations and relation
texts

Portfolios

User-related data
Other jobs

Medicine (med)

Access to medical information

Users/groups (mng)

Access to groups and users in enaio®

OCR (ocr)

Optical character recognition

Standard (std)

Work, cache, file and archive management.

Work, cache, and
archive management

File administration

Internal jobs
Other jobs

Full-text (vtx)

Processing full text queries of enaio® client

Workflow (wfm)

Processing and managing workflow processes
and models

Organizational structure
Workflow model

Workflow process and
process step
Workflow form, event,

and script
Administration and
history administration

Administration

History administration
Other jobs

enaio®

Page 9

enaio® server-api enaio®

Server-internal jobs

Core services (following engines are implemented directly in the server core)

Administration (adm) System file management

Kernel (krn) Batch management, server monitoring, registry | Registry administration
administration, and administration of loaded | Batch administration
engines at runtime

Server administration

Session administration

Engine administration

Other jobs
License (lic) License management for the entire enaio®
system
Data Transfer Services Server-side execution of the data transfer server
(Namespace dtr)

enaio® Page 10

enaio® server-api ‘ enaio®

enalo® Server API Engine
Documentation

Subscription Engine (Namespace abn)

Functions used to set up and control subscriptions are implemented in the subscription engine. These
inform the user about a change to DMS objects.

In multi-server systems, a server can only inform clients that are connected to the server.
abn.Add

abn.CheckOsrevisit
abn.GetAboGrpList
abn.GetDocList

abn.GetGroupList
abn.GetRequestList
abn.GetUserList
abn.NotifyRequestAbo
abn.NotifyAbonnement
abn.Remove

abn.RemoveAboldent
abn.UpdateRegAboGrp
abn.RemoveAllObjNotifyFromUser
abn.RemoveObjNotifyFromUser
abn.ConfirmAboRead
abn.RemoveObjRevisitNotifyFromUser
abn.SetObjRevisitClosed
abn.SetObjRevisitOpen
abn.ChangeRevisitUser
abn.AddRevisit

abn.UpdateRevisit
abn.GetSubscriptions
abn.GetRevisits

abn.SetOsInformed
abn.ResetOsInformed
abn.GetRecentObjects
ado.ExecuteSQL

enaio® Page 11

w W

enaio® server-api enaio®

abn.Add

Description:

This job creates a subscription for the specified object.

Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the object for which notification is intended

ObjectType (INT): Object type

ActionFlags (INT): action executed with the document, which leads to a notification
2 = notification if a document was created (only for subscribed search requests)
3 = notification if index data were changed (only for subscribed documents)

4 = notification if the document was changed

27 = notification if the document was deleted

w W w W wWw

39 = notification if a location was added

Channel (INT): notification channel (type of notification)

§ 0 - notification via internal channel (oxmljsc)

§ 1 - notification via e-mail

AboGrpID (STRING): this ID relates to all actions of a subscription

[User] (STRING): Name of the user receiving a notification

[Alias] (STRING): Subscription info text (max. 255 characters)

[Product] (STRING): String describing the program instance, e.g. ‘ax.exe’

[Confirm] (INT):

§ 1 =if user/group was notified, the message must be marked as read before it can be deleted;
§ 2 = before the message can be marked as read, the user's system password is queried; otherwise 0
[Station] (STRING): Name of the station exclusively intended to receive the message

[Mail] (STRING): E-mail address (max. 255 characters) for notification (multiple addresses are
separated by a semicolon)

[AboType] (INT): Distinguishes between search request subscription and document subscription
§ 0 =document subscription
§ 1 =search request subscription

[RequestFormat] (STRING): request format Default is 'ABN' for the native SQL format. In this case,
the search request is evaluated in the 'AboRequest’ parameter. If "XML" is specified, a DMSQuery
request is expected in the "XmIRequest' parameter.

[AboRequest] (STRING): SQL statement for search request subscriptions

The request must consist of lower-case letters and begin with 'select count (distinct d.id)" or with
'select distinct d.id", otherwise it will be rejected.

Depending on the main type of the requested object, the identifier 'o.id" must be used for folders,
'r.id" for registers or 'd.id' for documents.

enaio® Page 12

enaio® server-api enaio®

[XmIRequest] (STRING/Base64): Abo request in DMSQuery XML format

[GroupID] (STRING): GUID of the group intended for notification

[UserID] (STRING): User GUID of the subscription administrator if system subscriptions were created
Return:

(INT): 0 = job successful, otherwise error code

See also:

abn.Remove

abn.CheckOsrevisit
Description:

This job checks the follow-ups (table 'osrevisit') and sends a notification to users for which follow-ups
are set up if this is required by the respective time stamps. For notifying the concerned users, this job
uses the job 'abn.Osrevisit'. This job is periodically called internally. Therefore a batch must be set up
in the registry.

Parameter:

Flags (INT): not currently supported-> transfer 0
Return:

(INT): 0 = job successful, otherwise error code
See also:

Batch administration

abn.GetAboGrpList
Description:

This job provides information on the subscription via the AboGrp-ID.
Parameter:

Flags (INT): not currently supported-> transfer 0

AboGrplID (STRING): this ID relates to all defined actions of the subscription
Return:

(INT): 0 = job successful, otherwise error code

Return values:

Abo[1..n] (STRING): information on the subscription separated by semicolon
§ 1D of the document

Type of the document

Info Text

Subscription 1D

w W W W

Confirm: 1 = if user/group were notified, the message must be marked as read before it can be
deleted; otherwise 0

§ UserID: User GUID of the subscription administrator if system subscriptions were created

enaio® Page 13

enaio® server-api enaio®

§ GrouplD: ID of the group intended for notification

8 Subscription type: 0 = document subscription; 1 = search request subscription

§ Action which causes a notification

2 = notification if a document was created (only for subscribed search requests)
3 = notification if index data were changed (only for subscribed documents)

4 = notification if the document was changed

27 = notification if the document was deleted

w W W W W

39 = notification if a location was added

§ Notification type
§ 0= notification via internal channel (oxmljsc)
§ 1 =notification via e-mail; e-mail address

§ Name of the user receiving a notification

§ SQL statement for the search request subscription

abn.GetDoclList
Description:

This job returns all objects the specified user has subscribed to.
Parameter:

Flags (INT): controls the extent of the output

8 0= documents for the specified user name are determined

§ 1=inaddition, documents are determined that were created for user groups of which the user is
currently part

User (STRING): User name

[Product] (STRING): Search is restricted for the program instance

[Station] (STRING): Search is restricted for the name of the user station

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Document[1..n] (STRING): Information on the subscription separated by semicolon
§ Document ID

Type of the document

Info Text

Subscription 1D

w w W wWw

Confirm: 1 = if user/group were notified, the message must be marked as read before it can be
deleted; otherwise O

§ UserID: User GUID of the subscription administrator if system subscriptions were created

§ GrouplD: ID of the group intended for notification

enaio® Page 14

enaio® server-api enaio®

8 Subscription type: 0 = document subscription; 1 = search request subscription

§ Action which causes a notification

2 = notification if a document was created (only for subscribed search requests)
3 = notification if index data were changed (only for subscribed documents)

4 = notification if the document was changed

27 = notification if the document was deleted

w W W W W

39 = notification if a location was added

§ Notification type
§ 0= notification via internal channel (oxmljsc)
§ 1 =notification via e-mail; e-mail address

§ AboGrp: combines all data records of the different actions to a subscription

abn.GetUnreadAboCount
Description:
This job calculates the number of read and unread subscription notifications of a user.

Parameter:

Flags (INT): not currently supported-> transfer 0

UserID (INT): User ID of the user whose subscription notifications are to be calculated.

Mode (INT): Specifies which subscription notifications are to be calculated (optional):
§ 0: All subscription naotifications are calculated (default).

§ 1. Notifications from subscriptions which the user created him or herself will not be taken into
account.

§ 2:For every subscription, only the last subscription notification will be determined in each case.

§ 3: Notifications from subscriptions which the user created him or herself will not be taken into
account and for each subscription, only the last subscription notification will be calculated
(combination of mode 1 and mode 2).

Return:
Read (INT): Number of read subscription notifications

Unread (INT): Number of unread subscription notifications

abn.GetGrouplList
Description:

This job determines the user groups which have subscribed to the specified object.
Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the object to be checked

ObjectType (INT): Object type

Return:

enaio® Page 15

enaio® server-api enaio®

(INT): 0 = job successful, otherwise error code

Return values:

Groupl[1..n] (STRING): information on group and subscription separated by semicolon
Group ID

Group name

Group GUID

Group description

Subscription info text

User GUID of the subscription administrator if system subscriptions were created

AboGrp: combines all data records of the different actions to a subscription

w W w W W W W W

Action which causes a notification

2 = notification if a document was created (only for subscribed search requests)
3 = notification if index data were changed (only for subscribed documents)

4 = notification if the document was changed

27 = notification if the document was deleted

w w w W W

39 = notification if a location was added

8 Notification type
§ 0= notification via internal channel (oxmljsc)
§ 1 =notification via e-mail; e-mail address

§ Subscription ID

abn.GetRequestList
Description:

This job returns all search request subscriptions for the specified user.
Parameter:

Flags (INT): not currently supported-> transfer 0

User (STRING): User name

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Request[1..n] (STRING): information on search request separated by semicolon
Subscription info text

Object type

Subscription 1D

1 = request confirmation, otherwise 0

User GUID of the subscription administrator if system subscriptions were created

w w w W W W

GUID of the group intended for notification

enaio® Page 16

enaio® server-api enaio®

8 Subscription type: 0 = document subscription; 1 = search request subscription

§ Action which causes a notification

2 = notification if a document was created (only for subscribed search requests)
3 = notification if index data were changed (only for subscribed documents)

4 = notification if the document was changed

27 = notification if the document was deleted

w W W W W

39 = notification if a location was added
§ Notification type
§ 0= notification via internal channel (oxmljsc)
§ 1 =notification via e-mail; e-mail address
§ AboGrp: combines all data records of the different actions to a subscription

§ SQL string for the search request subscription

abn.GetUserList
Description:

The job returns a list of all subscription owners (search requests/documents) for the specified object.
Parameter:
Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the subscribed document or 0 = subscribed search requests for which a user list
will be created

ObjectType (INT): Object type

Return:

(INT): 0 = job successful, otherwise error code

Return values:

User[1..n] (STRING): list of all received subscription users

8 Name of the user receiving a notification

Subscription info text

User GUID of the subscription administrator if system subscriptions were created

AboGrp: combines all data records of the different actions to a subscription

w W w w

Action which causes a notification

2 = notification if a document was created (only for subscribed search requests)
3 = notification if index data were changed (only for subscribed documents)

4 = notification if the document was changed

27 = notification if the document was deleted

w w w W wWw

39 = notification if a location was added
8 Notification type

§ 0= notification via internal channel (oxmljsc)

enaio® Page 17

enaio® server-api enaio®

§ 1 =notification via e-mail; e-mail address
§ Subscription ID
abn.NotifyRequestAbo
Description:

This job is executed by the server kernel and checks if users need to be notified of new subscriptions.
To have the kernel execute this job, a batch called 'RegAbo’ must be set up.

Parameter:

Flags (INT): not currently supported-> transfer 0
Return:

(INT): 0 = job successful, otherwise error code
See also:

krn.Batch administration

abn.NotifyAbonnement
Description:

This job sends a notification to a user according to the specified parameters. If action = 1 (the
document has been deleted) the notification and the subscription for this document are deleted from
the database.

Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the document that was modified or deleted

ObjectType (INT): Object type

Action (INT): 1, if the document was deleted; 0, if the document was modified
User (STRING): name of the user who has modified or deleted the document
UserID (INT): ID of the user who has modified or deleted the document
Return:

(INT): 0 = job successful, otherwise error code

abn.Remove
Description:

This job deletes subscriptions for objects from the database. These parameters can be used in different
combinations. If e.g. the parameter 'Station' is used, only the entries for this station are deleted.

Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the document for which you want to remove the subscription
ObjectType (INT): Object type

[User] (STRING): Name of the user receiving a notification

[UserID] (STRING): User GUID of the subscription administrator if system subscriptions were created
enaio® Page 18

enaio® server-api enaio®

[GroupID] (STRING): ID of the group for which the subscription was defined

[Product] (STRING): to refine the search. String which describes the program instance of the
subscription which is supposed to be removed.

[Station] (STRING): to refine the search. String which describes the user station of the subscription
which is supposed to be removed.

[Alias] (STRING): Document alias whose subscription is to be removed (max. 255 characters)
Return:

(INT): 0 = job successful, otherwise error code

abn.RemoveAboldent
Description:

This job deletes a subscription entry from the table 'osabonnement’ according to the Abo-1D or the
AboGrp-ID.

Parameter:

Flags (INT): not currently supported-> transfer 0
[AbolD] (INT): Subscription ID

[AboGrplID] (STRING): ID of the subscription group
Return:

(INT): 0 = job successful, otherwise error code

abn.UpdateRegAboGrp

Description:

This job changes the SQL statement and the object type of search request subscriptions for the
subscription group.

Parameter:
Flags (INT): not currently supported-> transfer 0
AboGrplID (STRING): Subscription group

AboRequest (STRING): SQL statement for search request subscriptions

The request must consist of lower-case letters and begin with 'select count (distinct d.id)" or with
'select distinct d.id', otherwise it will be rejected.

Depending on the main type of the requested object, the identifier '0.id" must be used for folders,
'r.id" for registers or 'd.id" for documents.

ObjectType (INT): Object type
Return:

(INT): 0 = job successful, otherwise error code

abn.RemoveAllObjAboNotifyFromUser
Description:

This job removes all subscription notifications assigned to the user.

enaio® Page 19

enaio® server-api enaio®

Parameter:

Flags (INT): not currently supported-> transfer 0
ObjectID (INT): ID of the object

ObjectType (INT): Object type

UserID (INT): User ID

Return:

(INT): 0 = job successful, otherwise error code

abn.RemoveObjAboNotifyFromUser
Description:

This job removes a specific subscription notification assigned to the user.
Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the object

ObjectType (INT): Object type

UserID (INT): User ID

AboSetTime (INT): Notification time

SetUserID (INT): ID of the user who triggered the notification

Return:

(INT): 0 = job successful, otherwise error code

abn.ConfirmAboRead
Description:

This job sets the subscription notification for which a confirmation was requested to "confirmed'.
Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the object

ObjectType (INT): Object type

UserID (INT): ID of the user who is intended to receive the notification

AboSetTime (INT): time when the user received notification

Return:

(INT): 0 = job successful, otherwise error code

abn.RemoveObjRevisitNotifyFromUser
Description:

This job removes a specific follow-up notification assigned to the user.

Parameter:

enaio® Page 20

enaio® server-api enaio®

Flags (INT): not currently supported-> transfer 0
ObjectID (INT): ID of the object

ObjectType (INT): Object type

UserID (INT): User ID

RevisitTime (INT): Notification time

Return:

(INT): 0 = job successful, otherwise error code

abn.SetODbjRevisitClosed
Description:

This job sets a specific follow-up notification assigned to the user to ‘edited'.
Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the object

ObjectType (INT): Object type

UserID (INT): User ID

RevisitTime (INT): time when the notification was created

Return:

(INT): 0 = job successful, otherwise error code

abn.SetObjRevisitOpen
Description:

This job removes the status 'edited’ for a specific follow-up notification assigned to the user.
Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the object

ObjectType (INT): Object type

UserID (INT): User ID

RevisitTime (INT): time when the notification was created

Return:

(INT): 0 = job successful, otherwise error code

abn.ChangeRevisitUser
Description:

This job assigns all follow-up notifications of a user to another user.
Parameter:

Flags (INT): not currently supported-> transfer 0

enaio® Page 21

enaio® server-api enaio®

NewUserID (INT): ID of the new user
OldUserID (INT): ID of the user to date
Return:

(INT): 0 = job successful, otherwise error code

abn.AddRevisit
Description:

This job sets an object for a specific user to ‘follow-up'.

Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the object

ObjectType (INT): Object type

UserID (INT): ID of the user who is intended to receive the notification

RevisitTime (INT): time when the user is expected to receive the notification
InfoText (string): info text(max. 225 characters)

RevisitGUID (string): GUID to identify follow-ups belonging together (32 characters)

EMail (string): optional e-mail addresses to be specified, separated by a semicolon (max. 255
characters)

Confirm (INT): optional request to be specified for a password-protected confirmation
If 'Confirm' is not set or set to 0, no password will be requested.
Return:

(INT): 0 = job successful, otherwise error code

abn.UpdateRevisit
Description:

This job sets a new info text and a new follow-up time for an existing follow-up. Optionally, a new e-
mail address can be specified.

Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the object

ObjectType (INT): Object type

UserID (INT): ID of the user who receives the existing notification

SetUserID (INT): ID of the user who created the notification

OldRevisitTime (INT): time when the user should receive the notification
SetRevisitTime (INT): time when the existing notification was created
NewRevisitTime (INT): time when the user is expected to receive the notification

NewlInfoText (string): new info text (max. 225 characters)

enaio® Page 22

enaio® server-api enaio®
EMail (string): optional e-mail addresses to be specified, separated by a semicolon (max. 255
characters)

Confirm (INT): optional request to be specified for a password-protected confirmation

If ‘Confirm' is not specified, this setting will not change.

Return:

(INT): 0 = job successful, otherwise error code

abn.GetUnreadRevisitCount
Description:
This job calculates the number of read and unread follow-ups of a user.

Parameter:

Flags (INT): not currently supported-> transfer 0

UserID (INT): User ID of the user whose follow-ups are to be calculated.

StartTime (INT): Specifies for which time period the follow-ups are to be calculated (optional):
§ 0: All follow-ups until the current time (default).

§ >0: Specification of time in seconds as of 1970/01/01 01:00:00 (CET) until which follow-ups are
to be calculated.

Note:

When a time is specified, 86399 seconds (almost 24 hours) are always added. This is done to simplify
specification of a time. To calculate the follow-ups after 2018/01/01, the seconds up to 2018/01/01
00:00:00 are calculated and then you receive all the follow-ups due until 2018/01/01 23:59:59.

Return:
Read (INT): Number of read follow-ups

Unread (INT): Number of unread follow-ups

abn.GetSubscriptions
Description:

This job returns the subscriptions for the logged-on user in the format DMS Content.
Parameter:
Flags (INT): options for this job (currently none available)

[XML (BASE64)]: Request in XML format (see Detailed Description). Thus a selection of the
subscribed objects can be made. The possibilities for search requests are hereby limited to the ones of
linear search requests.

In addition, the following parameters can be set for formatting the returned XML document:
RequestType, OutputFormat, OutputLanguage, Baseparams, Offset, Pagesize, MaxHits, Rights,
DateFormat, Variants, FileInfo, Baseparams. The description of these parameters can be found in the
description of the job dms.GetResultList

Return values:

[Count] (INT): subscription count

enaio® Page 23

enaio® server-api enaio®

[XML] (BASE64): subscriptions in the DMSContent XML format
The following fields are returned:

Object status fields:

Number of links

Main type (only for documents)

Number of pages (only for documents)

Archiving status (only for documents)

Check-out status (only for documents)

Properties of subscriptions

Time when the follow-up was created (dbname="firstvisit")
Subscription type: (dbname="osabotype"). This field can have the following values
OBJECT_CREATED (@value="2")

DATA_CHANGED (@value="3")

DOCUMENT_CHANGED (@value="4")
DOCMOVEDFROMTRAY (@value="38") is treated like OBJECT_CREATED.
CREATEREFERENCE (@value="39")

Confirmation status (dbname="0sconfirm"). Values:

0=does not have to be confirmed

1=has to be confirmed

2=was confirmed

3=has to be confirmed with a password request

ID of the user who triggered the action, which has set the subscription notification for the user
(dbname="set_user_id")

GUID of the user who set up the subscription (dbname="set_user_id"). This value will only be set if
another user has set up the subscription

Remark concerning the subscription (dbname="infotext")
Index data of the object

Example:

<Rowset>

<Columns=>

<Column object="Photos" type="DOCUMENT" name="links" system="1" datatype="INTEGER"
dbname="links" ostype="9" size="10">0BJECT_LINKS</Column>

<Column object="Photos" type="DOCUMENT" name="count" system="1" datatype="INTEGER"
dbname="count" ostype="9" size="10">0BJECT_COUNT </Column=>

<Column object="Photos" type="DOCUMENT" name="flags" system="1" datatype="INTEGER"
dbname="flags" ostype="9" size="10">0OBJECT_FLAGS</Column>

<Column object="Photos" type="DOCUMENT" name="lockuser" system="1"
datatype="INTEGER" dbname="lockuser" ostype="9" size="10">0BJECT_LOCKUSER</Column>
<Column object="Photos" type="DOCUMENT" name="main type" system="1"
datatype="INTEGER" dbname="main type" ostype="9" size="10">0BJECT_MAIN</Column>

enaio® Page 24

enaio® server-api enaio®

<Column object="Revisit" type="REVISIT" name="firstvisit" system="1" datatype="DATETIME"
dbname="firstvisit" ostype="9" size="10">REV_FIRSTVISIT</Column>

<Column object="Revisit" type="REVISIT" name="0sabotype" system="1" datatype="INTEGER"
dbname="0sabotype" ostype="9" size="10">REV_OSABOTYPE</Column>

<Column object="Revisit" type="REVISIT" name="0sconfirm" system="1" datatype="INTEGER"
dbname="0sconfirm" ostype="9" size="10">REV_OSCONFIRM</Column>

<Column object="ReVvisit" type="REVISIT" name="set_user_id" system="1" datatype="INTEGER"
dbname="set_user_id" ostype="9" size="10">REV_SET_USER_ID</Column>

<Column object="ReVisit" type="REVISIT" name="0suserid" system="1" datatype="TEXT"
dbname="0suserid" ostype="X" size="32">REV_OSUSERID</Column=>

<Column object="Revisit" type="REVISIT" nhame="infotext" system="1" datatype="TEXT"
dbname="infotext" ostype="X" size="225">REV_INFOTEXT </Column>

<Column object="Photos" type="DOCUMENT" name="Comments" datatype="TEXT"
dbname="field1" ostype="X" size="248">Comments</Column=>

</Columns>

<Rows>

<Row id="73543">

<Value=>0</Value>

<Value>1</Value>

<Value value="2">NOT_ARCHIVABLE</Value>

<Value value="0">UNLOCKED</Vvalue>

<Value value="3">COLOR</Value>

<Value value="1089804789">2004/07/14 13:33:09</Value>

<Value value="2">0BJECT_CREATED</Vvalue>

<Value>1</Value>

<Value value="53">LOVE</value>

<Value value="" />

<Value>New photos</value>

<Value>Front view</value>

</Row=>

</Rows>

</Rowset>

enaio® Page 25

enaio® server-api enaio®

abn.GetRevisits
Description:

This job returns the follow-ups for the logged-on user in the DMS Content format.
Note:

Currently this is not available for portfolios

Parameter:

Flags (INT): options for this job

§ 4096 = the XML document is encoded as UTF-8, otherwise UTF-16

StartTime (STRING): optional time stamp for the time by when the follow-ups
are to be returned. Format: YYYY/MM/DD HH:MM.SS, the time does not have to be specified.

Special value 0: (default) all currently available and unchecked follow-ups are returned

In addition, the following parameters can be set for formatting the returned XML document:
RequestType, OutputFormat, Baseparams, Offset, Pagesize, MaxHits, Rights, DateFormat, Variants,
Filelnfo, Baseparams. The description of these parameters can be found in the description of the job
dms.GetResultList

Return values:

[Count] (INT): Follow-up count

[XML] (BASE64): Follow-ups in the DMSContent XML format
The following fields are returned:

§ Object status fields:

Number of links

Main type (only for documents)

Number of pages (only for documents)

Archiving status (only for documents)

w w W W W

Check-out status (only for documents)
§ Properties of the follow-up:
§ Time when the follow-up was created (dbname="set_time")
§ Time as of when the follow-up is displayed to the user (dbname="firstvisit")

§ Time at which the user has acknowledged the follow-up (dbname="lastvisit"). See also
‘abn.SetODbjRevisitClosed' or ‘abn.SetObjRevisitOpen’

§ Comment on template (dbname="infotext")
§ Confirmation of the follow-up (dbname="0sconfirm")

§ (0=no confirmation with a password expected, 1 = confirmation only possible with password
input)

§ The user who set up the follow-up (dbname="set_user_id")
§ Index data of the object

Example:

enaio® Page 26

enaio® server-api enaio®

<Rowset>

<Columns=>

<Column object="Grayscale image" type="DOCUMENT" name="links" system="1"
datatype="INTEGER" dbname="links" ostype="9" size="10">0OBJECT_LINKS</Column>
<Column object="Grayscale image" type="DOCUMENT" name="count" system="1"
datatype="INTEGER" dbname="count" ostype="9" size="10">0BJECT_COUNT </Column=>
<Column object="Grayscale image" type="DOCUMENT" name="flags" system="1"
datatype="INTEGER" dbname="flags" ostype="9" size="10">OBJECT_FLAGS</Column>
<Column object="Grayscale image" type="DOCUMENT" name="lockuser" system="1"
datatype="INTEGER" dbname="lockuser" ostype="9" size="10">0BJECT_LOCKUSER</Column=>
<Column object="Grayscale image" type="DOCUMENT" name="main type" system="1"
datatype="INTEGER" dbname="main type" ostype="9" size="10">0BJECT_MAIN</Column>
<Column object="ReVvisit" type="REVISIT" name="set_time" system="1" datatype="DATETIME"
dbname="get_time" ostype="9" size="10">REV_SET_TIME</Column=>

<Column object="Revisit" type="REVISIT" name="lastvisit" system="1" datatype="DATETIME"
dbname="lastvisit" ostype="9" size="10">REV_LASTVISIT</Column>

<Column object="ReVisit" type="REVISIT" name="firstvisit" system="1" datatype="DATETIME"
dbname="firstvisit" ostype="9" size="10">REV_FIRSTVISIT</Column>

<Column object="ReVisit" type="REVISIT" name="0sconfirm" system="1" datatype="INTEGER"
dbname="0sconfirm" ostype="9" size="10">REV_OSCONFIRM</Column>

<Column object="Revisit" type="REVISIT" name="set_user_id" system="1" datatype="INTEGER"
dbname="gset_user_id" ostype="9" size="10">REV_SET_USER_ID</Column>

<Column object="ReVisit" type="REVISIT" name="infotext" system="1" datatype="TEXT"
dbname="infotext" ostype="X" size="225">REV_INFOTEXT</Column>

<Column object="Grayscale image" type="DOCUMENT" name="Document type"
datatype="TEXT" dbname="field1" ostype="X" size="30">Document type</Column>

<Column object="Grayscale image" type="DOCUMENT" name="Date" data type="DATE"
dbname="datel" ostype="D" size="10">Date</Column=>

<Column object="Grayscale image" type="DOCUMENT" name="Author" data type="TEXT"
dbname="field2" ostype="X" size="50">Author</Column=>

<Column object="Grayscale image" type="DOCUMENT" name="Source" data type="TEXT"
dbname="field3" ostype="X" size="150">Source</Column>

<Column object="Grayscale image" type="DOCUMENT" name="Content" data type="TEXT"
dbname="field4" ostype="X" size="150">Content</Column=>

</Columns>

<Rows>

<Row id="415">

<Value>0</Value>

<Value>l</Value>

<Value value="2">NOT_ARCHIVABLE</value>

<Value value="">UNLOCKED</Vvalue>

<Value value="1">GRAYSCALE</Value>

<Value value="1089723507">2004/07/13 14:58:27</value>

<Value value="0" />

<Value value="1089723600">2004/07/13 15:00:00</Value>

<Value />

<Value value="53">LOVE</Vvalue>

<Value=>Please view</value>

<Value>Drawing</Value>

<Value=>2002/09/04</Value>

<Value>Love</value>

<Value>Cave</Value>

<Value>Cattle</value>

</Row=>

<Row id="416">

<Value>0</Value>

<Value>0</Value>

<Value value="8">NO_PAGES</value>

<Value value="">UNLOCKED</Vvalue>

<Value value="1">GRAYSCALE</value>

enaio® Page 27

enaio® server-api

enaio®

<Value value="1089727995">2004/07/13 16:13:15</Vvalue>
<Value value="0" />

<Value value="1089728100">2004/07/13 16:15:00</Vvalue>
<Value />

<Value value="53">LOVE</Vvalue>

<Value>Deliver image subsequently</value>
<Value=Annoyances</Value>
<Value>2002/09/05</Value>

<Value>Admin</value>

<Value=Unknown</value>

<Value>Bat</Vvalue>

</Row=>

</Rows>

</Rowset>

abn.SetOsInformed
Description:

This job sets an object in the subscription list to 'read’

Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the object

ObjectType (INT): Object type

UserID (INT): ID of the user who receives the existing notification
AboSetTime (INT): time stamp when the subscription was created
Return:

(INT): 0 = job successful, otherwise error code

abn.ResetOsInformed
Description:

This job sets an object in the subscription list to 'unread’
Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the object

ObjectType (INT): Object type

UserID (INT): ID of the user who receives the existing notification
AboSetTime (INT): time stamp when the subscription was created
Return:

(INT): 0 = job successful, otherwise error code

abn.GetRecentObjects
Description:

This job determines the dms objects recently edited by the logged in user.

enaio® Page 28

enaio® server-api enaio®

Parameter:

Flags (INT): not currently supported-> transfer 0

Count (INT): number of DMS objects to be determined

HistActIDList (String): comma-separated list of HistActID

Return:

Recent (String): Comma and semicolon-separated list of the determined DMS objects.

Parameter (In):

Count DWORD | Number of recently edited dms objects. The value's range is limited
(Required) from 5 to 99. When indicating a value beyond the range limits, either 5
or 99 is used as value, depending on which range limit the indicated
value is close to the most.

E.g.

Count=0 -> Count=5

Count=1000 -> Count=99

HistActIDList | String A comma-separated list of osHistAct actions, which are to be used to
(Optional) determine the most recently edited dms objects.

If this parameter is not indicated, the actions "2,3,4" will be used.

2 - Object created: the specified object was created by functions of the
client or by an import.

3 - Index data modified: the index data of the object or its status was
modified by functions of the client or by an update by means of the
import.

4 - Document changed: the document was edited by functions of the
client or by an update by means of the import.

Parameter (Out):

Recent | String | Comma and semicolon separated list of determined DMS objects.

Form:

Objld1,0bjTypel,Actionl,Timel;...; Objld(n),ObjType(n),Action(n), Time(n)
E.g.

12,0,2,12389147391; 13,1,2,12389137474; 14,0,3,12389127897

The order is sorted by time in descending order. l.e. the first list item is the most
recently edited dms object.

ADO Database Engine (Namespace ado)

The ADO database engine makes it possible to access the database within the three-tier architecture.
This is done as follows. The client sends an SQL query to the application server which executes the
query and sends the result as ADO (Active Data Object) record set in XML representation to the client.

These features are used especially for SQL queries, to formulate queries that go beyond the normal
search options of the client.

enaio® Page 29

enaio® server-api enaio®

With this interface, data manipulations (INSERT, UPDATE, DELETE) can then be carried out as well,
if it is allowed in the registry of the application server.

ado.ExecuteSQL
Description:

This job executes an SQL statement in the database. The result is stored in an XML file and saved in the
ostemp directory.

Parameter:
Flags (LONG): currently not supported transfer-> 0 passed

CursorType (int): -1 = Cursor type as specified in the registry (default); 0,1,2,3 = in accordance with
the ADO constants for cursor types. Others values lead to error messages.

Command (STRING): SQL command for execution
Return:

(INT): 0 = job successful, otherwise error code

Return values:

File list: path and name of the result file in XML format
Example:

Returned XML file for 'SELECT * FROM osorganizations'

<xml xmIns:s=""uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882
xmlIns:dt=""uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"
xmIns:rs="urn:schemas-microsoft-com:rowset"” xmlns:z="#RowsetSchema'>
<s:Schema id=""RowsetSchema’>

<s:ElementType name="row" content="eltOnly" rs:CommandTimeout=""30"
rs:updatable="true">

<s:AttributeType name="id" rs:number="1" rs:nullable="true"
rs:writeunknown=""true" rs:basecatalog="as_test"
rs:basetable=""0osorganizations" rs:basecolumn=""id">

<s:datatype dt:type="'string” rs:dbtype="str" dt:maxLength='"32"/>
</s:AttributeType>

<s:AttributeType name="name"™ rs:number="2" rs:nullable="true"
rs:writeunknown="true" rs:basecatalog="as_test"
rs:basetable="0osorganizations” rs:basecolumn="name">

<s:datatype dt:type="string” rs:dbtype="str" dt:maxLength="255"/>
</s:AttributeType>

<s:AttributeType name="layout"” rs:number="3" rs:nullable="true"
rs:maydefer=""true" rs:writeunknown="true"
rs:basecatalog="'as_test" rs:basetable="osorganizations"
rs:basecolumn="layout'>

<s:datatype dt:type="bin._hex" dt:maxLength="2147483647"
rs:long=""true"/>

</s:AttributeType>

<s:AttributeType name="active" rs:number="4" rs:nullable="true"
rs:writeunknown=""true" rs:basecatalog="as_test"
rs:basetable=""osorganizations”™ rs:basecolumn="active'>
<s:datatype dt:type="int" dt:maxLength="4" rs:precision="10"
rs:fixedlength=""true"/>

</s:AttributeType>

<s:extends type="'rs:rowbase'/>

</s:ElementType>

</s:Schema>

<rs:data>

<z:row i1d=""45808CE977334AB88C5A8EFF467689A8" name="Test" active="1"/>

enaio® Page 30

enaio® server-api ‘ enaio®

</rs:data>
</xml>

Convert Engine (Namespace cnv)
This engine provides jobs for the conversion of image files.
cnv.ConvertDocument

cnv.CreateSlide

cnv.AddAnnotations

cnv.Getlcons

cnv.GetExifData

cnv.GetPageCount

cnv.GetPicturelnfos

w W W W W W W W

cnv.GetRendition

cnv.ConvertDocument
Description:

This job converts one or more document files of the given format into one or more PDF or TIFF files.
Depending on the used configuration, any number of input and output formats are available.

For example, the following classes of transformation are possible:

Bitmap format (JPG, TIF)-> PDF

Single page TIFF -> Multi page TIFF

ASCII-COLD (asc)-> TIFF / PDF

XSL:FO (.fo, xml) -> PDF

Office documents (ps, doc, xlIs, ppt, txt, rtf, pdf, ima)->PDF

For bitmap formats and ASCII COLD documents, a flag can be set to control whether an output file is
created for each input file (A) or the individual pages are merged in one document (B):

Seite Seite Seite
1 1 1
Mehr-
Seite CNV Seite Seite CNV seitiges
2 > 2 2 ® Dokument
Seite Seite Seite
3 3 3
L~ L L~
B
A
Parameter:

Flags (INT): Options for the job
8 0=an output file is created for each input file
8 1=allinput files are written into an output file

8 2 =anoutput file is created for each input file, temporary files created by the server are not deleted

enaio® Page 31

enaio® server-api enaio®

§ 3 =allinput files are written into an output file, temporary files created by the server are not deleted
SourceFormat (STRING): output file format

DestinationFormat (STRING): destination conversion format (see above).

- Note: The format specifications are expected in lower case (‘pdf' instead of PDF).

Timeout (INT): (optional) maximum time in milliseconds for a conversion using external programs.
Taken into account for XSL:FO and Office format conversions.

AddAnnotations (INT): 1 = Public layers are burnt in.

ConvertEqualFormat (INT): (Optional, default is 0) if set to 1, conversion is attempted even if source
and target format are identical, e.g. to convert a PDF into a PDF/A.

Watermark (INT): (optional, default is 0) if set to 1, header and footer lines are added to a created PDF
document. Design and content are configured in enaio® administrator. See enaio® administrator
handbook -> print labeling tab.

An additional possibility is to use the extended watermarks function. To do so, request the
documentation for the oxsvrspt.dll library.

dwObijectID (INT): (optional) document object ID for use in watermarks. Only required if the
Watermark option was set to 1 and the print watermarks are configured to include the document ID at
output.

ProtectPDF (INT): (optional, default is 0) a created PDF document is protected. It is then no longer
possible to print the document or to copy text from it.

ObjectID (INT): (required parameter) document ID

ObjectType (INT): (required parameter) object type

or

File list: path and name of the files to be converted.

If ObjectID and ObjectType are passed, OS RenditionPlus (___ ren.bat) is used for conversion.
Digest (STRING): (optional) hash value of the document

Optionally, 'SLIDE' can be passed as target format for preview generation. With 'Height' and 'Width'
you can specify the size of the preview to be generated.

Thus, "TXT" instead of 'SLIDE' is allowed as target format also for text recognition.
Return values:

File list: Path and name of the converted file(s)

Return:

(INT): 0 = job successful, otherwise error code

See also:

cnv.CreateSlide

Use of XSL:FO

8 The Apache FOP processor must be installed for conversion of FO (formatting objects) files. It
requires Java runtime environment version 1.6 or higher. The path to the FOP batch file
(Windows) or to the FOP shell script (Linux) must be saved in the registry using e.g. the Enterprise

enaio® Page 32

enaio® server-api enaio®

Manager. Furthermore, a time (timeout) can be defined after which the conversion process will be
aborted.

§ If an XML document is transferred to the FOP, an XSLT document has to be additionally
transferred to the input file list as a second file, with which the XML can be transferred to an
XSL:FO document.

§ Ifimages are to be integrated into the resulting PDF document, they have to be referenced in the
XSL:FO file with a URL accessible by the application server.

8 Only one FO or XML document can be processed per job.
Example of a cnv.ConvertDocument call:

SourceFormat: XML
DestinationFormat: PDF
Flags=0

1. Input file: XML file with any input information.

<?xml version="1.0" encoding="1S0-8859-1" standalone="yes"?>
<?xml-stylesheet type="text/xsl" href="example.fo"?>

<persons>
<person "42">John Doe</person>
<person ""37"">Jane Doe</person>
</persons>

2. Input file: XSL file for conversion into an XML:FO file.

<?xml version="1_.0" encoding="1S0-8859-1""?>

<xsl:stylesheet "http://www.w3.0rg/1999/XSL/Transform"
"http://www.w3.0rg/1999/XSL/Format" "1.0">

<xsl:template “'persons'>

<fo:root “http://www.w3.0rg/1999/XSL/Format'>

<fo:layout-master-set>

<fo:simple-page-master one"' "'29cm" "21lcm™

2cm™ 2cmt>
<fo:region-body "50pt" "50pt'/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:block “center"' "24pt” "bold"
"28pt™ "10mm"*>

<xsl:apply-templates/>

</fo:block>

</fo:root>

</xsl:template>

<xsl:template “person”>

</xsl:template>
</xsl:stylesheet>

cnv.CreateSlide
Description:

This job converts files and documents of the formats JPG or TIF into a slide file with the same format
of the input file. Slide files are highly compressed and help to preview the document.

Parameter:

Flags (INT): Options for the job

§ 0=aslide output file is created

§ 2 =aslide output file is created, temporary files created by the server are not deleted

enaio® Page 33

enaio® server-api enaio®

(required parameter)

ObjectID (INT): ID of the document

ObjectType (INT): Object type

or

File list: Path and name of the file in JPG or TIF format to be converted.

Page (STRING): (optional) page number of the document (file list) for which data is to be determined.
Default '1', "All’ for all pages.

Return values:

File list: path and name of the converted slide file(s) with the same format as the input file(s)
Return:

(INT): 0 = job successful, otherwise error code

See also:

cnv.ConvertDocument

cnv.AddAnnotations
Description:

This job is used to burn annotations (transparencies) on one or more image files.
Note:

The job takes into account access rights to the annotations. Thus only the personal transparency of the
user who is logged on to the system will be displayed.

Parameter:

Flags (INT):

8 0 =the input files are deleted. A temporary copy of unaltered input files is created.

8 2= Input files are not deleted. Unaltered input files are written back to the output list.
AnnotationID (INT): (optional) specific ID of an annotation to be burned on the input file(s).

dwObijectID (INT): (optional) ID of an object to be burned on the input file(s). AnnotationID can,
dwObjectID has to be transferred for this.

File list: paths and names of the files to be annotated.

Return values:

nProcessed: number of image files that have been annotated.

sAnnotationIDs: comma-separated list of AnnotationIDs, which were burned on the files.

File list: path and name of the annotated image file if annotations were available for this input file.
Otherwise the input file will be returned without any changes (refer to Flags). The output format
corresponds to the format of the input file.

Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 34

enaio® server-api enaio®

cnv.Getlcons
Description:

This job returns icons in GIF format. This enables to read user-specific icons which are used in the
archive area or in the hit lists.

Parameter:

Flags (INT): not currently supported-> transfer 0

slconlds (String): comma-separated list of icon IDs.

Return values:

slconlds (String): comma-separated list of icon IDs in the same order as the output files.
File list: path and name of the icons in GIF format.

Return:

(INT): 0 = job successful, otherwise error code

cnv.GetExifData
Description:

This job determines the EXIF data from the image files of a document.

Data (EXIF, Dicom and general data) are determined only for EXIF, JPEG, TIF, and Dicom files.
Parameter:

ObjectID (INT): ID of the document

ObjectType (INT): Object type

or

File list: paths and names of the files from which data will be determined.

Flags (INT): (required parameter) 1 = do not delete transferred file list, 0 = delete for client-side calls.

Page (STRING): (optional) page number of the document (file list) for which data is to be determined.
Default '1", "All* for all pages.

Return values:

Contained information.

The information is returned as 'lead tool name(page number) value'.
e.g.

CMNT_SZMAKE(1) "Panasonic"

CMNT_SZMODEL(1) "DMC-TZ10"

Return:

(INT): 0 = job successful, otherwise error code

cnv.GetPageCount
Description:

enaio® Page 35

enaio® server-api enaio®

This job determines the total number of pages from the image files of a document.

This applies only to image and PDF documents. If the total number of pages could be determined from
all files in the list or from the document, 'FileCount' and 'PageCount’ are returned.

Parameter:

(required parameter)

ObjectID (INT): ID of the document

ObjectType (INT): Object type

or

File list: paths and names of the files whose total number of pages are to be determined.
Flags (INT): (required parameter) 1 = do not delete transferred file list, 0 = delete for client-side calls.
Return values:

FileCount (INT): number of files of the document (file list)

PageCount (INT): number of files of the document (file list)

Return:

(INT): 0 = job successful, otherwise error code

cnv.GetPicturelnfos
Description:

This job determines image information from the files of a document.

This applies only to image and PDF documents.

Parameter:

(required parameter)

ObjectID (INT): ID of the document

ObjectType (INT): Object type

or

File list: paths and names of the files whose total number of pages are to be determined.

Flags (INT): (required parameter) 1 = do not delete transferred file list, 0 = delete for client-side calls.

Page (STRING): (optional) page number of the document (file list) for which data is to be determined.
Default '1', "All' for all pages.

Return values:

Image information; the information is returned as 'info name(page number) value'.
The following information (INT) is returned for image documents:

"InfoBits(1)"

"InfoCompress(1)"

"InfoFormat(1)"

"InfolFD(1)"

enaio® Page 36

enaio® server-api enaio®

"InfoLayers(1)"

"InfoSizeDisk(1)"

"InfoSizeMem(1)"

"InfoViewPerspective(1)"

"InfoHeight(1)"

“Infowidth(1)"

"InfoFileType(1)"

"InfoFileSuffix(1)"

The page number is indicated by the respective value in brackets.
For PDF files, the following information is returned:
"InfoFormat(1)"

"InfoFileType(1)"

"InfoFileSuffix(1)"

Return:

(INT): 0 = job successful, otherwise error code

cnv.GetRendition
Description:

This job executes a rendition of a document using a call via the ___ ren.bat file.

Parameter:

(required parameter)

ObjectID (INT): ID of the document

ObjectType (INT): Object type

Flags (INT): (required parameter) 1 = do not delete transferred file list, 0 = delete for client-side calls.

DestinationFormat (STRING): format into which the file will be converted. See also
cnv.ConvertDocument

Optionally, 'SLIDE' can be passed as target format for preview generation. With 'Height' and 'Width'
you can specify the size of the preview to be generated.

"TXT" instead of 'SLIDE' is allowed also as target format for text recognition.
Digest (STRING): (optional) hash value of the document

Watermark (INT): (optional, default is 0) if set to 1, header and footer are added to a created PDF
document. Design and content are configured in enaio® administrator. See enaio® administrator
handbook, chapter: 'Print Labeling' Tab

AddAnnotations (INT): 1 = Public layers are burnt in.

ProtectPDF (INT): (optional, default is 0) a generated PDF document is protected. Thus, the
document cannot be printed and it is not possible to copy paragraphs.

SynchData (INT): (optional, default is 0)

enaio® Page 37

enaio® server-api enaio®

Return values:
File list: Path and name of the converted file(s)
Return:

(INT): 0 = job successful, otherwise error code

DMS Engine (Namespace dms)

The DMS Executor includes jobs to request and edit index data, DMS objects, relations, and portfolios
while taking account of the security system. In addition, there are jobs to administer the security
system on the object level.

Areas

XML import
XML export (search)

Security system
Relations and relation texts

Portfolios

User-related data

Other jobs

w w W W W W W

XML Import
DMS.CheckInDocument
DMS.CheckOutDocument
DMS.GetXMLJobOptions
DMS.UndoCheckQutDocument
DMS.XMLDelete
DMS.XMLInsert
DMS.XMLMove

DMS. XML Copy
DMS.XMLUpdate
DMS.XMLImport
DMS.XMLUnknownToKnown

w wu W W W W W W W W W

Detailed Description

All XML import jobs have the same schema and can therefore usually be treated with a standard
procedure. They all have the same input parameters and basically the same output parameters. There is
for example the XMLInsert job which has the transfer parameters 'flags’, ‘options' and "XML'.

The general behavior of the job (e.g. error list generation or XML validation) is controlled by the
'Flags'. The 'Options' parameter can be used for switching certain checks on or off (e.g. key field
check). The parameter 'XML' contains the data describing the object to be inserted. The parameter
‘JobUserGUID' can be used to modify the user context for this job.

enaio® Page 38

enaio® server-api enaio®

Example:

The example shows an XML file which inserts a document with the document type: ‘document type
name' from the cabinet: 'cabinet name' with the XMLInsert job. The field with the name ‘field name'
and the value 'my value' are inserted into the new document's index data.

<?xml version="1.0" encoding="UTF-8"7?>
<DMSData>

<Archive name="cabinet name">

<ObjectType name="‘document type name' type="DOCUMENT">
<Object>

<Fields>

<Field name="Field Name'>My Value</Field>
</Fields>

</Object>

</ObjectType>

</Archive>

</DMSData>

Return parameters are the object ID of the newly inserted object and optionally (see Flags) an XML
text describing the errors which occurred. Every job has a return value beyond the parameters. Upon
successful completion, the return value will be 0. Otherwise a value describing the nature of the
possible error will be returned.

The 'XML' Parameter

With the "XML' parameter, the object description will be transferred in XML format. XML has to be
Base64-encoded as the server otherwise has problems to transfer special characters. Also UTF-16/UCS-
4 formats might not be transferred in such a case. A schema exists for the XML structure against which
the XML can be validated. Job 'GetXMLSchema' exists in order to view this schema. Enter the
‘DMSData’ value in the 'Schema' parameter and get the import schema in the return file list. If you
enter attributes, which you do not want to be evaluated by the job, text attributes have to be initialized
with the empty string " and numeric attributes have to be initialized with the value '1.'

The Import Schema
The hierarchical XML structure is shown in the figure below.

enaio® Page 39

enaio® server-api ‘ enaio®

=

———

: TableFields | ' Remnarks !

= X

Description of the XML Schema

DMSData: this tag represents the root tag of the XML. With the optional 'query language' attribute you
can specify the language for the DMS identifier. The relevant language code is expected as a value, e.g.
7' for German or '9' for English. If this attribute is not specified or set to ‘0", the request language will
be the default language.

Archive: The attributes of these tags are used to identify the cabinet in which the object type to be
handled is located or is to be inserted. If no potential attributes are specified, the system tries to find
the right cabinet according to the object type which will be imported. However, this is done at the
expense of the performance and should be avoided whenever possible. The cabinet can be identified
based on the attributes: ID (1D of the object type), name (name of the cabinet), internal_name
(internal cabinet name) or osguid (GUID of the cabinet).

ObjectType: The object type of the object to be handled is defined within these tags. In the attributes, it
has to be specified whether the type of the involved object is a folder, register or document (possible

enaio® Page 40

enaio® server-api enaio®

values are FOLDER, REGISTER and DOCUMENT). The object type can be determined by analyzing
the attributes: name, internal_name, object type 1D, table name, osguid or a valid combination of
maintype and cotype.

Obiject: This tag contains information specifically concerning the object to be processed. If an object,
which already exists on the server, has to be specified by the job (e.g. XMLUpdate), the object_id (ID
of the folder, register or document) has to be set as attribute. If a location has to be specified (e.g. for
XMLInsert()), it is described here as a combination of register_id, register_type, and/or folder_id. In
addition, it is also possible to determine the maintype for documents. Variants of W-documents can be
specified by setting the 'variantparent_id' attribute (document ID to which the variant will be added;
see also Options: Variantsamelevel, Variantsetactive). The sub elements of these tags have to be
indicated in the prescribed order in the XML. It is possible to check whether this object has been edited
by another user since the last query by indicating the ‘concurrency_timestamp' attribute in connection
with the timestamp of the 'MODIFYTIME' field which has to be queried before. An update is refused
in this case. With the 'sourceparent_id' attribute, you can determine which location will be changed if a
document with several locations is moved or deleted.

Warning: if the main type of a document is changed and a document log is used at the same time, only
the document will be restored in case of a recovery, however, not the modified main type. This may
cause inconsistencies when a document is edited!

Fields: this tag is allowed only once for each object and represents a list of all fields which are to be
edited.

Field: this tag describes the field which will be inserted or modified. The field can be identified on
the basis of the attributes: name (name of the field on the data sheet), internal_name (internal field
name), dbname (field name in the database), sortpos (tab position on the data sheet) or osguid
(GUID). The element's text contains the value which will be assigned to the field. It is also possible
to set a value to 'blank’ by indicating the 'field_function' attribute (see below). If the field is a system
field, this has to be indicated by entering the value '1' for the system attribute (system). Available
system fields are:

Database Internal name Description

name
OSOWNER OBJECT_USERGUID Owner of the object

FOREIGNID OBJECT_FOREIGNID Foreign ID of a
reference

SYSTEMID OBJECT_SYSTEMID System ID of an object

Warning: if there is a reference to a document with variant administration by means of the system 1D
(=0) and a corresponding foreign ID, this may lead to inconsistency if variants are activated with main
types which are not the same main types as those of the reference!

Furthermore, a 'field_function' attribute can be set optionally. The following values are allowed:

Attribute Description
value
NULL The field value is blank (as DBNull)

OBJECT_ID The field's value is equivalent to the unique internal ID of the object.

enaio® Page 41

enaio® server-api enaio®

USER Name of the logged-out user

MultiFields: This tag is allowed only once for each object and represents a list of all multi fields which
will be processed. Multi fields are only allowed for documents.

Multifield: This element is used to identify a specific multi field of a document. The multi field can be
identified by the attributes: name (name of the multi field), internal_name, dbname (name of the
field in the database) or osguid (GUID).

Page: This element identifies a certain page whose page number has to be indicated in the 'ID’
attribute.

Value: Values which correspond to the specified pages. The value is part of the element'’s text.

TableFields: This tag is allowed only once for each object and represents a list of all table fields of the
object to be processed.

TableField: A specific table field (table control) of an object is identified by this element. A table field
can be identified based on the attributes: name, internal_name, dbname (name in the database) or
osguid (GUID).

Row: This tag describes a table field row. Thus, it is a summary of all columns of a certain row. (As
an alternative to this specification of table field entries, they can also be determined by a (LOL)
specification of rows and columns. See below.)

Field: This tag is a value of a specific column in a row of the table field. It can only be identified by
the attributes: name, internal_name or dbname (name in the database). The element text contains
the value which will be added.

Furthermore, a 'field_function' attribute can be optionally set (see above for details).

OR
Columns: This tag is a collection of column tags.

Column: This tag describes a field within a table control. The field can be identified by its
attributes: name, internal_name or dbname (name in the database). In the following tags in rows,
the field values are listed in the same order as the columns.

Rows: This tag describes a list of row tags and thus a collection of table control rows.
Row: A row, which corresponds to a row in the table control, is described here.

Value: This tag describes a field value of a row. The assigned field also must have been
indicated in the 'Column’ tag at the according position. The element's text is equivalent to a
value of the field.

Furthermore, a 'field_function' attribute can be optionally set (see above for details).

Remarks:This tag describes a list of remarks which will be assigned to the object.

RemarkText: This tag describes a remark text for the specified object. The element's text is
equivalent to the note's text.

RemarkODbject: This tag describes an object, which is to be linked to the specified object via the
remarks. The object which has to be linked with the object_id attribute and the object_type
attribute has to be selected.

enaio® Page 42

enaio® server-api enaio®

The 'Flags’ Parameter

Every job has a 'Flags' parameter. Flags allow to control the general behavior of the job. Flags can also
be combined. If, for example, an error list has to be returned in the data format (flags = 1) and UTF-16
encoded (flags = 16), the 'Flags' parameter has to be set to the value '17' (1 + 16). The following flags
exist:

Flag = Description

1 The error list is returned as a file.

2 The job does not return an error list.

4 The job does not perform a validation with the XSD file

8 The provided files are not deleted on the server.

16 The returned error list is UTF-16 encoded. (Default value UTF-8)

The 'Options' Parameter

The 'Options' parameter allows you to determine which checks are carried out. This can partly lead to
great improvements in performance. The parameter value is a semicolon-separated list with the
format: OPTION1=1; OPTION2=0;

Description Default Usable for
the job
APPENDFILESTOFRONT For updates or variant (0) Option not | XMLInsert
generation whether files are | active XMLUpdate

appended before (1) or
after (0) the existing one

ARCHIVABLE Specifies whether the XMLInsert: XMLInsert
document's statusissetto | (0) Option not | XMLUpdate
archivable (1) or not active XMLCopy
archivable (0) XMLUpdate:

Option not
defined

CHECKACCESS User permissions for the (1) Option XMLInsert
object are checked (1) or active XMLUpdate
not checked (0) XMLMove

XMLDelete
XMLCopy

CHECKCATALOGUE Checks whether all (1) Option XMLInsert

transferred catalog entries | active XMLUpdate

are also contained in the
original catalog (1) or not
checked (0)

CHECKEXISTENCE Checks whether the (1) Option XMLInsert

enaio® Page 43

enaio® server-api

enaio®

specified object exists at the | active XMLUpdate

given location (1) or is not XMLMove

checked (0) XMLDelete
XMLCopy

CHECKKEYFIELDS Checks whether all key (1) Option XMLInsert
fields are unambiguous (1) | active XMLUpdate
or not checked (0)

CHECKOBLIGATION Checks whether all (1) Option XMLInsert
mandatory fields have been | active XMLUpdate
completed (1) or not
checked (0)

CHECKPOSITION Checks whether specified (1) Option XMLMove
(target) objects (e.g. active XMLCopy
folders) exist (1) or not
checked (0)

CHECKREADONLY Checks whether any fields (1) Option XMLUpdate
were changed without write | active
access (1) or not checked
Q)

DELETECASCADING Specifies whether cascading | (0) Option not | XMLDelete
deletion is carried out for active
objects even if they contain
sub objects (1) or not (0)

COPYCASCADING Specifies whether objects (0) Option not | XMLCopy
are copied in a cascading active
way if they contain sub
objects (1) or not (0)

FULLTEXTFILEATTACHED Specifies whether full-text (0) Option not | XMLInsert
data for the document will | active XMLUpdate
be attached to the last
transferred file (1) or not
(0)

HARDDELETE Specifies whether an object | (0) Option not | XMLDelete
is deleted permanently and | active
therefore not moved to the
trash can (1) or not (0)

INITFIELDS Specifies whether all (1) Option XMLInsert
uncompleted fields will be | active XMLUpdate
filled out with default
values (1) or not (0)

INUSERTRAY Specifies whether the object | (0) Option not | XMLMove
is inserted in the user's active XMLInsert
filing tray (1) or not (0)

INWFTRAY Specifies whether the object | (0) Option not | XMLMove

is inserted in the user's

enaio®

Page 44

enaio® server-api

enaio®

workflow tray (1) or not (0) | active XMLInsert

REPLACEFILES Specifies whether files XMLInsert XMLUpdate
which have already been (variants): (1) XMLInsert
saved are replaced by the Option active,
transferred files (1) or XMLUpdate: (0)
whether the transferred Option not
files are appended (0) active

REPLACEMULTIFIELDS Specifies whether the (0) Option not | XMLUpdate
transferred multi-fields active
replace the originals (1) or
whether they are appended
Q)

REPLACEREMARKS Specifies whether the (0) Option not | XMLUpdate
transferred notes replace active
the originals (1) or whether
they are appended (0)

REPLACETABLEFIELDS Specifies whether the (0) Option not | XMLUpdate
transferred table fields active
replace the originals (1) or
whether they are appended
(0)

TRUNCATEVALUES Specifies whether (0) Option not | XMLInsert
transferred strings will be active XMLUpdate
truncated if their character
number exceeds the defined
value (1) or not (0)

TYPELESS Specifies whether a typeless | (0) Option not | XMLInsert
object is inserted in the active
filing tray (1) or not (0)

UPDATEALLFIELDS Specifies whether fields (0) Option not | XMLInsert
which have not been active XMLUpdate
specified are set to blank
(1) or not (0)

VARIANTSAMELEVEL Specifies whether the (0) Option not | XMLInsert
variant is inserted on the active
same layer (1) or as a "sub-
variant" (0)

VARIANTSETACTIVE Specifies whether the new (0) Option not | XMLInsert
variant is set as "Active" in | active
the same step (1) or not (0)

VARIANTTRANSFERRETENTION | Specifies whether the (0) Option not | XMLInsert
original retention time is active

assigned to the new variant
(1) or not (0)

enaio®

Page 45

enaio® server-api enaio®

LINKDOCUMENT Specifies whether a (0) Option not | XMLCopy
document is allowed to active
receive only one location
(1) or not (0)

WFTOUSERTRAY Specifies whether, when a (0) Option not | XMLMove
document is moved, it is active

moved from the workflow
tray to the user tray (1) or

not (0)

KEEPLINKWHENEXISTS Specifies whether an (0) Option not | XMLCopy
existing link should be active XMLMove
assessed as an error (1) or
not (0)

(Applies for XMLCopy
only in connection with the
option LINKDOCUMENT)

DELETEVARIANTMODE Specifies whether the (0) Option not | XMLDelete
deletion of a given inactive | active
variant leads to the deletion
of the whole variant tree (1)

or not (0)

COPYINDEXONLY Specifies whether only the | (0) Option not | XMLCopy
index data is copied (1) or | active
not (0)

COPYCREATEHISTORY Specifies whether (1) Option XMLCopy

information for copying is | active
entered in the history (1) or
not (0)

The "JobUserGUID' Parameter

The "JobUserGuid' parameter allows the user to change the context of the XML job. This is true for all
XMLImport jobs, i.e. all 'XML..." jobs which modify objects in the DMS. If the user's GUID is specified
here, all checks (e.g. access rights), filing trays or similar are used only by the specified user.

Warning: This option is only available if the corresponding jobs are called from the server by other
jobs. A client, however, will not be allowed to use this option!

The 'File_N' Parameter

Every job which analyzes transferred files can instead be given a number of parameters. In an
ascending order, the parameters are called, File_0, File_1, etc. The parameters have the 'string’ type and
include a file path, the file therefore does not have to be transferred to the file list. This is for cases in
which the caller is logged on the server's processor. The effort of transferring a file through the network
adapter is avoided. In this case, read or write access to the server path (whether local or with UNC
notation) has to be guaranteed. Either a list of files can be transferred or a number of file parameters. It
is not allowed to mix both.

enaio® Page 46

enaio® server-api

The Return Value

enaio®

Every job generates a return value. In case of success it is always '0'. Otherwise a return value describing
the nature of the possible error will be returned. Exact error messages, however, are necessary for a
detailed analysis. The following return values exist:

Error code Description

0 The job has been successfully executed.

-1 A general error has occurred. (In this case the error cannot be specified)
-2 No cabinet has been specified.

-3 The specified cabinet is unknown

-4 No register type has been specified.

-5 The specified register type is unknown.

-6 No document type has been specified.

-7 The specified document type is unknown.

-8 The specified register does not exist in the specified folder.

-9 The specified document type is not allowed in the specified cabinet.
-10 The required folder identifier is missing.

-11 The required document identifier is missing.

-12 The required register identifier is missing.

-13 The required register identifier is unknown.

-14 The required folder identifier is unknown.

-15 The required document identifier is unknown.

-16 Updating folder failed.

-17 Updating folder failed.

-18 Updating register failed.

-21 The document has already been archived.

-22 The specified/required object is unknown.

-23 The ID of the specified register does not exist on the archive server.
-24 The field name could not be resolved.

-28 Invalid field value for field.

-29 The specified objectID is invalid.

-30 The required fields have not been filled out.

-31 The specified value does not match the type on the archive server.
-32 The specified/required file does not exist.

enaio®

Page 47

enaio® server-api

-40 A transfer parameter contains errors or is missing.

-47 The user does not have the appropriate rights on the archive server.
-51 The document contains no pages.

-65 No index could be obtained from the server.

-68 Itis not allowed to move folders.

-89 Invalid relation between document and register.

-90 Reference documents cannot be moved without indicating a location.
-94 No document pages are allowed.

-1001 Unable to find the specified value in the corresponding catalogue.
-1002 The key field is ambiguous.

-1003 It has been tried to set a read-only field.

-1004 No document list was specified.

-1005 The specified object is connected to a workflow process.

-1006 The requested function is not yet implemented in the present version.
-1007 An error occurred while the object definitions were read by ObjDefReader.
-1008 A requested file could not be accessed.

-1009 The object is in the trash can.

-1010 The document is in a portfolio.

-1011 Recurrence depth is too large, the action was cancelled.

-1012 The target register is a child register of the register which will be moved.
-1013 A system ID but no foreign ID have been specified.

-1014 No pages can be added to a reference document.

-1015 The document cannot reference to another document as it contains pages.
-1016 An error occurred while parsing the XML text.

-1017 An error occurred while validating the XML text.

-1018 The XML text is incomplete.

-1019 The specified owner could not be determined.

-1020 Invalid object type for this operation.

-1021 No cascading deletion allowed, as the object contains sub objects.
-1022 The reference could not be found.

-1023 The specified system field must not be manipulated by the user.
-1024 A job parameter is missing.

-1025 The specified parameter value is invalid.

-1026 Rights authorization cannot be bypassed by users.

Page 48

enaio® server-api enaio®

-1027 More values than available columns were specified for the table field.
-1028 An error occurred while inserting note objects/texts.

-1029 An XML element is unknown.

-1030 An object type was not found on the DMS server.

-1031 No object field was found on the DMS server.

-1032 The job was cancelled by the user.

-1033 The specified condition is invalid.

-1034 An XML attribute is incorrect.

-1035 A required XML attribute is missing.

-1036 Only documents can be checked out.

-1037 The document has been checked in.

-1038 The document has been checked out.

-1039 The document has been checked out by another user.

-1040 The document has been checked out by another station.
-1041 The document cannot be checked out because it has no pages.
-1042 The document is not located in the workflow tray.

-1043 The document is located in the workflow tray.

-1044 The parent variant of the document could not be determined.
-1045 New variants can only be created for W-documents.

-1046 The document variant could not be determined.

-1047 The entered user data are ambiguous.

-1048 A competitive update of an object failed.

-1049 The search request was not found.

-1050 A copy of the object does already exist in the specified location.
-1051 The request format is not supported.

-1052 The cabinet name could not be read.

-1053 The document name could not be read.

-1054 The register name could not be read.

-1055 An expression has an invalid format.

-1056 The section name is invalid.

-1057 A general error occurred while reading the search request
-1058 Unknown request format

-1059 A new variant has been created but could not be set to 'active'.
-1060 The search request could not be processed.

enaio® Page 49

enaio® server-api enaio®

-1061 No objects can be moved or linked within the system.

-1062 The location of the object could not be determined.

-1063 A document does already exist in the specified location.

-1064 It is not allowed to copy objects with key fields.

-1065 The entered password is incorrect.

-1066 New password is the same as the old password.

-1067 The full text search contains only words which are ignored.
-1068 There is insufficient memory.

-1069 Access to a system resource was denied.

-1070 The XMLImport job returns 'Error' instead the number of hits.

Cross Job Restrictions
The following descriptions are universal, they are therefore valid for all XML Import Jobs.

Date and Time Formats

Date fields can be imported in the formats listed below. This means that DD always stands for a day
with two digits (‘09" instead of '9"), MM represents a month with two digits and YY stands for a year
with two digits while YYYY represents a year with four digits.

§ YYMMDD
8§ YYYYMMDD
§ YYYY/MM/DD

Time fields can be imported in the format HH:MM:SS, with HH representing the hours with two-
digits, MM for the minutes and SS for the seconds. Time stamps are basically imported in the format
YYYY/MM/DD HH:MM:SS, with the date and time separated by blanks.

Special Field Types
8 A checkbox can only accept the values 0 or 1.

8 Aradio button can be identified as field with the name of the first button (after the tab sequence). If
the radio buttons are also correctly grouped with a group field, the field can also be identified with
the name of the group field. Valid values for the corresponding buttons start with 0.

8 Field types like 'type of patient,' 'page,' ‘gender," and ‘question’ can contain the first letter as well as
the value spelled out in full.

§ Decimal values can start with a plus or minus sign. The digits before and after the comma can be
separated by a comma or a dot.

8 In text fields with several lines, single lines of the values can be separated using 'Carriage Return
Line Feed'. In XML this represents the combination: 
.

Additional Field Values

All fields can also get the value ZERO through the *field_function' attribute. In this case, this means
that the field is desired to be empty. Numeric fields and text fields can get the value of the object's

enaio® Page 50

enaio® server-api enaio®

internal ID through the same attribute. In this case, the field value will be replaced with the new or
existing ID of the corresponding object.

The XML Error List

If an error occurred, a return value describing the nature of the possible error will be returned,
however very often this is not a sufficient description of the exact error. Therefore all jobs generate an
error list. The error list can be obtained with GetErrorList() after the job has been executed. This error
list contains the exact description of the recently occurred errors. The errors described first are the
most conclusive errors. The error list is in general also provided as XML in the 'DMSResult’ return
parameter. Alternatively, this XML can also be returned as a return file.

Example:
XML error list

<?xml version="1_.0" encoding="UTF-8" standalone="yes"?>

<DMSData>

<Messages>

<Message Sourcename="‘oxjobdms''>The field >Table - Column2< has
a catalog; the value >7&I1t; could not, however, be found

in the catalog</Message>

<Message Sourcename="oxjobdms'>SAX error: Common exception</Message>
<Message Sourcename="‘oxjobdms'>An error occurred during XML
import</Message>

</Messages>

</DMSData>

Besides, all errors which occurred on the server can be seen in the framework of the usual server
logging.

DMS.CheckinDocument
Description:

This job checks in the specified document. The document is transferred to the server and deleted at its
location (indicated in the File List parameter).

Parameter:

Flags (INT): 1 = the transferred document can be checked in by another station, otherwise 0
[ArchiveType] (INT): cabinet type

ObjectType (INT): Object type

ObjectID (INT): ID of the document

File list: path and name of the file to be checked in

Return values:

Info (STRING): if the document has been checked out by another user/station, the name will be
returned

See also:
DMS.CheckOutDocument

DMS.CheckOutDocument
Description:

enaio® Page 51

enaio® server-api enaio®

This job checks out the specified document. The document will be marked as checked out in the
database. The actual document has to be fetched from the server with the job std.StorelnCache.

Parameter:

Flags (INT): 1 = the document will be checked out to ‘external,’ otherwise 0.
Number of hits (INT): cabinet type

ObjectType (INT): Object type

ObjectID (INT): ID of the document

Return values:

[Info] (STRING):if the document is already checked out, the name of the person checking out is
returned

See also:
DMS.ChecklnDocument, DMS.UndoCheckOutDocument

DMS.UndoCheckOutDocument
Description:

Use this job to undo the checkout of the specified document.

Parameter:

Flags (INT): 1 = checkout out can be undone by another station, otherwise 0.
Number of hits (INT) cabinet type

ObjectID (INT): Document ID

ObjectType (INT): Object type

Return values:

[Info] (STRING): if another user tries to undo the checkout, the name of the person checking out is
returned (the same applies to the station)

DMS.GetXMLJobOptions

Description:

This job returns all options of the jobs XMLInsert, XMLUpdate, XMLMove and XMLDelete.
Return values:

JobOptions (BASEG64): list of all job options in XML format

Example:

Structure of JobOptions

<?xml version="1_.0" encoding="UTF-8" standalone="yes"?>
<DMSOptions>

<DMSOption optionstring=""" description=""" defaultvalue="" />
<DMSOption optionstring=""" description=""" defaultvalue="" />

</DMSOptions>

enaio® Page 52

enaio® server-api enaio®

Note:
Detailed description of JobOptions
8 optionstring: Name of the option
8 description:description of the option
8§ defaultvalue: default value
§ SET: the option is set by default
§& NOT_SET: the option is not set by default
§ UNDEFINED: the option is not defined by default
See also:

The 'Options' Parameter

DMS.RestorelndexdataVersion

Description:

This job restores the specified version from the index data history.
Parameter:

Flags (INT): not currently supported

ObjectID (INT): ID of the document whose index data is to be restored
Guid (STRING): GUID of the object version to be restored

DMS.XMLDelete
Description:

This job deletes the specified object. Folders, registers and documents can be deleted. The
'HARDDELETE' option offers to two ways to delete:

8 'Delete physically': the object is completely deleted, i.e. it is not moved to the trash can. If the object
is a document all of its files will also be erased from the server.

8 'Delete to trash can': the object will not be physically erased but moved to the trash can from where
it can be restored.

The object can contain sub objects (e.g. a folder contains documents). This object cannot be deleted
without deleting all its sub objects. This is controlled by the 'DELETECASCADING' option.

It is not possible to delete objects which are assigned to a workflow process. If a document exists in
several locations, the job usually will delete the document from all locations. However, it is also
possible to delete the document from only one location. Therefore the parent attributes (register ID,
register type or folder ID) have to be set in the object element. This specifies the location of the
document which is to be deleted.

Parameter:
Flags (INT): general options for the job (see Flags)

Options (STRING): semicolon-separated job options (e.g. HARDDELETE=1 ;CHECKACCESS=0)
(see Options)
XML (BASEG64): contains object description in XML format (see The XML Parameter)

enaio® Page 53

enaio® server-api enaio®

JobUserGUID (STRING): determines the user context (see The JobUserGUID Parameter)
Note:

The following XML examples always contain all tags and tag attributes which can be used for the
respective actions. Of course, unnecessary tags and attributes can be dropped.

Example:

XML for deleting a folder

<?xml version="1_.0" encoding="UTF-8"7?>

<DMSData>

<Archive id="-1" name="press archive" internal_name="" osguid=""">
<ObjectType name="'press archive" type="FOLDER"™ internal_name=""" osguid="""

table=""" id="-1">

<Object object_id='"214"/>
</ObjectType>

</Archive>

</DMSData>

Example:

XML for deleting a register

<?xml version="1.0" encoding="UTF-8"7?>

<DMSData>

<Archive i1d="-1" name="press archive" internal_name=""" osguid=""">
<ObjectType type="REGISTER" name='"Register" internal_name=""" osguid="""
table=""" id=""-1">

<Object object_id="229"/>

</ObjectType>

</Archive>

</DMSData>

Example:

XML for deleting a document

<?xml version="1.0" encoding="UTF-8"7?>

<DMSData>

<Archive name="press archive" id="-1" internal_name=""" osguid=""">
<ObjectType name="Word texts' maintype="4" cotype="0" type="DOCUMENT"
id="-1" internal_name=""" osguid=""" table=""">

<Object object_id="214" variantparent_id="-1"/>

</ObjectType>

</Archive>

</DMSData>

DMS.XMLInsert
Description:

This job inserts an object into enaio®. A folder, register or document can be inserted. The return value
'‘ObjectID' is the ID of the inserted object or -1, if the job failed. If the object, which is inserted, is a
document and if it contains files which have to be transferred to the archive server, the file list has to be
completed with the corresponding file paths. Slides can also be passed. If more than one slide has to be
passed, only the first slide from the list will be inserted into the archive server. In case of a document or
register, the location of the new object has to be entered into the XML object element. If there has only
been entered a register 1D, the register type and the cabinet will be specified automatically. However,
due to performance reasons it is recommended to make these specifications.

Parameter:

enaio® Page 54

enaio® server-api enaio®

Flags (INT): general options for the job (see Flags)

Options (STRING): Semicolon-separated job options

(e.g. ARCHIVABLE=1;CHECKACCESS=0) (see Options)

XML (BASE64): contains object description in XML format (see The XML Parameter)
JobUserGUID (STRING): determines the user context (see The JobUserGUID Parameter)

[File list]: Path and name of the documents to be inserted

File_N: (STRING) file path n as an alternative to the file list
Return values:

ObjectID (INT): new object ID, if the job succeeds, otherwise -1
ObjectType (INT): object type, otherwise -1

[File list]: path and name of the XML file with the errors (see flags)
Note:

The following XML examples always contain all tags and tag attributes which can be used for the
respective actions. Of course, unnecessary tags and attributes can be dropped.

Important:

If important attributes such as main type, register ID, register type or system are not used, they should
be either completely omitted, or set to '0" or '-1' depending on the functionality.

Important:

The following example with the '<TableFields/>" tags only works if there is a table in the indexing mask
of the cabinet.

Example:

XML for inserting a folder into a cabinet

<?xml version="1_.0" encoding="UTF-8"7?>

<DMSData>

<Archive id="-1" name="press archive" internal_name="" osguid=""">
<ObjectType table="" id="-1" name="press archive” internal_name="""
osguid=""" type="FOLDER">

<Object>

<Fields>

<Field dbname=""" name="specialist area" internal_name=""
osguid=""">software development</Field>

<Field dbname="field2" system=""" name=""" internal_name="""
osguid=""">test user</Field>

</Fields>

<TableFields>

<TableField dbname="table" system='"" name="" internal_name=""">
<Row>

<Field name="description' internal_name=""

dbname=""">Documentation</Field>

</Row>

</TableField>

</TableFields>

<Remarks>

<RemarkText action="INSERT" color="WHITE">A note can be defined here.</RemarkText>
<RemarkObject action="INSERT" object i1d="123" object_type="196616"">Link
note</RemarkObject>

enaio® Page 55

enaio® server-api enaio®

</Remarks>
</Object>
</ObjectType>
</Archive>
</DMSData>

Important:

The following example with the '<TableFields/>" tags only works if there is a table in the indexing mask
of the register.

Example:

XML for inserting a register

<?xml version="1.0" encoding="UTF-8"7?>

<DMSData>
<Archive i1d="-1" name="press archive" internal_name=""" osguid=""">
<ObjectType table="" id="-1" name="year2004" internal_name=""" osguid=""

type="REGISTER">
<Object folder_id="228">

<Fields>
<Field dbname=""" system=""" name="category' internal_name="""
osguid=""">New development</Field>

<Field dbname=""" system=""" sortpos=""" name=""" internal_name="""
osguid=""BDEDS8A3C99E64AD2A4ECBFDB586" >Public</Field>

</Fields>

<TableFields>

<TableField dbname="" name="table" internal_name=""">

<Row>

<Field name="topic" internal_name="""

dbname=""">Document management</Field>

</Row>

</TableField>

</TableFields>

<Remarks>

<RemarkText action="INSERT" color="WHITE">A note on the register.</RemarkText>
<RemarkObject action="INSERT" object_ i1d="234" object_type='"196616"">Link
note</RemarkObject>

</Remarks>

</Object>

</ObjectType>

</Archive>

</DMSData>

Important:

The following example with the '<TableFields/>" tags only works if there is a table in the indexing mask
of the document.

Example:

XML for inserting a document

<?xml version="1_.0" encoding="UTF-8"7?>
<DMSData>

<Archive id="-1" name="press archive" internal_name="" osguid=""">
<ObjectType table="" id="-1" maintype="4" cotype="0" name="Word texts"
internal_name=""" osguid=""" type="DOCUMENT"">

<Object object_id="-1" folder_id=""" register_id="78" register_type="0"
variantparent_id="-1" maintype="0">

<Fields>

<Field dbname=""" system=""0" name="author" internal_name=

enaio® Page 56

enaio® server-api enaio®

osguid=""">Test user</Field>
</Fields>

<MultiFields>

<MultiField dbname="" system="0" name=
osguid=""2AED8BA3399EE778DS4ECBFDB582"">
<Page id=""1">

<Value>345</Value>

</Page>

<Page id="2">

<Value>123</Value>

</Page>

</MultiField>

</MultiFields>

<TableFields>

<TableField dbname="" name="table'" internal_name="" osguid=""">

<Row>

<Field name="Team" internal_name=""

dbname=""">Development</Field>

<Field name="" internal_name="feld2" dbname=""">

Status: released</Field>

</Row>

</TableField>

<TableField dbname=""" name= internal_name=""
osguid=""AAED8A3C99EED78DS4ECBFDB586"">

<Row>

<Field name=""" internal_name=""" dbname="fd1l">Year 2004</Field>

</Row>

</TableField>

</TableFields>

<Remarks>

<RemarkText action="INSERT" color="BLUE'">A note on the document.</RemarkText>
<RemarkObject action="INSERT" object i1d="432" object_type='"196616">Link
note</RemarkObject>

</Remarks>

</Object>

</ObjectType>

</Archive>

</DMSData>

internal_name="""

DMS.XMLMove

Description:
This job moves an object. You can move a register or a document. Parent attributes (register ID,

register type and folder ID) are attributes indicating the new location. The folder ID should be
indicated even if the object’s new location is a register.

If a register is moved, it will be moved to the new location with all its sub objects. In addition, the
location of reference documents has to be indicated as 'sourceparent_id' attribute in the object tag.

Documents can be moved to the user tray. Therefore no locations have to be indicated in the XML
object element, but the option 'WFTOUSERTRAY" has to be activated. The document which will be
moved must have been in the workflow tray before, documents from folders and registers cannot be
moved.

Documents can be moved from the user tray or the workflow tray. These documents can then be
moved to a register or folder. The job automatically recognizes whether the object is located in a
register, folder, workflow tray or user tray.

Parameter:

Flags (INT): general options for the job (see Flags)

enaio® Page 57

enaio® server-api enaio®

Options (STRING): Semicolon-separated job options

(e.g. ARCHIVABLE=1;CHECKACCESS=0) (see Options)

XML (BASE64): contains object description in XML format (see The XML Parameter)
JobUserGUID (STRING): determines the user context (see The JobUserGUID Parameter)
Note:

The following XML examples always contain all tags and tag attributes which can be used for the
respective actions. Of course, unnecessary tags and attributes can be dropped.

Important:

If important attributes such as 1D are not required in the tags, either leave them out completely or set
them to '0' or '-1' depending on the function.

Example:

XML for moving a register

<?xml version="1_.0" encoding="UTF-8"7?>

<DMSData>

<Archive id="-1" name='"press archive" internal_name=""" osguid=""">
<ObjectType type="REGISTER" name='"Register' internal_name=""" osguid="""
table=""" 1d="-1">

<Object object_id="28" folder_id="58" register_id="-1"
register_type="-1"/>

</ObjectType>

</Archive>

</DMSData>

Example:

XML for moving a document

<?xml version="1_.0" encoding="UTF-8"7?>

<DMSData>

<Archive id="-1" name="press archive" internal_name="" osguid=""">
<ObjectType type="DOCUMENT" name="Word texts" maintype="4" cotype="0"
internal_name=""" osguid="" table="""

id="-1">

<Object object_id="248" register_id="228" register_type="6488064""
folder_id="58"/>

</ObjectType>

</Archive>

</DMSData>

DMS.XMLCopy

Description:

This job copies objects; folders, registers and documents can be copied. If a register or folder is copied,
you can use the 'COPYCASCADING' option to determine whether all contained objects are copied in a
cascading way.

If a document is copied, it can be copied in two ways. Either a new document is generated or a
reference to the original document is made at the new location. The document then has two locations,
but only one index dataset. To link the document this way, the 'LINKDOCUMENT" job option has to
be selected. Source and target location have to be different for such a reference copy. This option is also
valid for all documents which are copied with the 'COPYCASCADING' option.

enaio® Page 58

enaio® server-api enaio®

Parent attributes (register ID, register type and folder D) are attributes indicating the new location.
The folder ID should be indicated even if the object's new location is a register. The register type can be
determined by the executor, however, due to performance reasons it is recommended to make these
specifications.

Parameter:

Flags (INT): general options for the job (see Flags)

Options (STRING): Semicolon-separated job options

(e.g. LINKDOCUMENT=1;CHECKACCESS=0) (see Options)

XML (BASEG64): contains object description in XML format (see The XML Parameter)
JobUserGUID (STRING): determines the user context (see The JobUserGUID Parameter)
File_N: (STRING) file path n as an alternative to the file list

Note:

The following XML examples always contain all tags and tag attributes which can be used for the
respective actions. Of course, unnecessary tags and attributes can be dropped.

Example:

XML for creating a new document location

<?xml version="1_.0" encoding="UTF-8"7?>

<DMSData>

<Archive id="-1" name="press archive" internal_name="" osguid=""">
<ObjectType type="DOCUMENT" name="Word texts" internal_name=""" osguid="""
table=""" id=""-1">

<Object object_id="28" folder_id="58" register_id="-1"
register_type="-1"/>

</ObjectType>

</Archive>

</DMSData>

DMS.XMLUpdate

Description:

This job modifies the specified object. A folder, register or document can be updated. File paths can be
passed to the file list if the object which will be inserted is a document. The 'REPLACEFILES' option
determines whether the files will replace existing files or whether they will be appended to them.

Documents can be changed into reference documents as long as they do not contain files. This is done
by setting the 'Foreign ID' system field (and possibly the system ID). Similar rules are true for reference
documents: they can be changed back to documents if the foreign ID (and possibly the system ID) are
removed. This is done by setting the system fields using the attribute 'field_function' and the value
'NULL".

The owner can be changed by specifying the ‘Owner" system field. The owner cannot be queried with
GUID; the value has to be a user name.

If the 'concurrency_timestamp' attribute is filled with a value in the object tag, it is checked whether
the dataset has been changed since the last call, and an error is returned. Thus, it can be prevented that
changes between the call and the desired change get lost.

By default, table control rows are appended to the existing data. If in the <Row> element, the 'line’
attribute is set with a row number, the respective row will be updated. Numbering of the rows is 1-

enaio® Page 59

enaio® server-api enaio®
based. If the REPLACETABLEFIELDS job option is activated, all existing rows will be completely

replaced by the new data.

The job option REPLACEREMARKS specifies whether, when notes or links are created, all existing
notes and all existing links are deleted or the notes and links are added (default). 'RemarkText' and
'RemarkObiject’ have the attribute "action with the following values: INSERT (default), DELETE,
UPDATE, UPDATE_TEXT, UPDATE_COLOR. Existing notes are specified via the ID (remark_id),
links via object 1D and object type ID of the linked object.

Parameter:

Flags (INT): general options for the job (see Flags)

Options (STRING): Semicolon-separated job options

(e.g. ARCHIVABLE=1;CHECKACCESS=0) (see Options)

XML (BASEG64): contains object description in XML format (see The XML Parameter)
JobUserGUID (STRING): determines the user context (see The JobUserGUID Parameter)

[File list]: path and name of the modified document
File_N: (STRING) file path n as an alternative to the file list
Note:

The following XML examples always contain all tags and tag attributes which can be used for the
respective actions. Of course, unnecessary tags and attributes can be dropped.

Example:

XML for changing a folder

<?xml version="1_.0" encoding="UTF-8"?>

<DMSData>
<Archive i1d="-1" name="press archive" internal_name=""" osguid=""">
<ObjectType table="" id="-1" name="press archive" internal_name=""

osguid=""" type="FOLDER">
<Object object_id="54">

<Fields>
<Field dbname=""" system="0" name="specialist area"”
internal_name=""" osguid=""">Software development</Field>

<Field dbname="field2" system="0" internal_name=""

osguid=""">test user</Field>

</Fields>

<TableFields>

<TableField dbname="table" system="0" name=""" internal_name=""">

<Row>

<Field name="description" internal_name=""
dbname=""">Documentation</Field>

</Row>

</TableField>

</TableFields>

<Remarks>

<RemarkText action=""INSERT" color="WHITE">A note on the folder.</RemarkText>
<RemarkObject action="INSERT" object id="123" object_type='"196616"">Link
text</RemarkObject>

</Remarks>

</Object>

</ObjectType>

</Archive>

</DMSData>

Example:

enaio® Page 60

enaio® server-api enaio®

XML for changing a register

<?xml version="1.0" encoding="UTF-8"7?>

<DMSData>
<Archive i1d="-1" name="press archive" internal_name=""" osguid=""">
<ObjectType table="" id="-1" name="year2004" internal_name=""" osguid=""

type=""REGISTER">
<Object object_id ="312" folder_id="228" register_id="-1"
register_type="-1">

<Fields>

<Field dbname=""" system="0" name='category"’
osguid=""">New development</Field>

<Field dbname=""" system=""0" name=""" internal_name="""
osguid=""BDED8A3C99E64AD2A4ECBFDB586 " >Public</Field>
</Fields>

<TableFields>

<TableField dbname="" name="table" internal_name=""'>
<Row>

<Field name="topic" internal_name=
dbname=""">Document management</Field>

</Row>

</TableField>

</TableFields>

<Remarks>

<RemarkText action="INSERT" color="WHITE">A note on the register.</RemarkText>
<RemarkObject action="INSERT" object i1d="234" object_type='"196616"">Link
text</RemarkObject>

</Remarks>

</Object>

</ObjectType>

</Archive>

</DMSData>

Example:

XML for changing a document

<?xml version="1.0" encoding="UTF-8"7?>

<DMSData>

<Archive id="-1" name="press archive" internal_name= osguid=""">
<ObjectType table="" id="-1" maintype="4" cotype="0" name="Word texts"
internal_name=""" osguid=""" type=""DOCUMENT"">

<Object object_id="221" folder_id=""" register_id="-1" register_type=
variantparent_id="-1" maintype="0">

<Fields>

<Field dbname=""" system="'0" name="‘author" internal_name=""
osguid=""">Test user</Field>

</Fields>

<MultiFields>

<MultiField dbname="" system="0" name=""" internal_name=""

osguid=""2AED8A3399EE778DS4ECBFDB582"">

<Page id=""1">

<Value>345</Value>

</Page>

<Page id="2">

<Value>123</Value>

</Page>

</MultiField>

</MultiFields>

<TableFields>

<TableField dbname="" name="table" internal_name=
<Row>

<Field name="Team" internal_name=
dbname=""">Development</Field>

osguid=""">

enaio® Page 61

enaio® server-api enaio®

<Field name=""" internal_name="field2"

dbname=""">Status: released</Field>

</Row>

</TableField>

<TableField dbname="" name=""" internal_name=""
osguid=""AAED8A3C99EED78DS4ECBFDB586"">

<Row>

<Field name=""" internal_name=""" dbname="fd1l">Year 2004</Field>

</Row>

</TableField>

</TableFields>

<Remarks>

<RemarkText action="INSERT" color="BLUE'">A note on the document.</RemarkText>
<RemarkObject action="INSERT" object i1d="432" object_type='"196616"">Link
text</RemarkObject>

</Remarks>

</Object>

</ObjectType>

</Archive>

</DMSData>

DMS.XMLImport
Description:

This job allows to insert or update an object depending on the result of the previous search.
Parameter:

Flags (INT): general options for the job (see Flags)

Options (STRING): Semicolon-separated job options

(e.g. ARCHIVABLE=1;CHECKACCESS=0) (see Options)

XML (BASE64): contains the object description in XML format (see The XML Parameter) with the
<SearchFields> tag extension. Refer to the chart below.

JobUserGUID (STRING): determines the user context (see The JobUserGUID Parameter)

[Action0]: Action when no hit is returned (see action table)

[Actionl1]: Action when a hit is returned (see action table)

[ActionM]: Action when multiple hits are returned (see action table)

[File list]: path and name of the documents to be inserted

Return values:

ObjectID (INT): new object ID, if the job succeeds, otherwise -1

ObjectType (INT): object type, otherwise -1

Hits (INT): number of search hits

Action: executed action. Possible values are UPDATE, INSERT, NONE, ERROR
[File list]: path and name of the XML file with the errors (see flags)

enaio® Page 62

enaio® server-api enaio®

R -
: 0.
. Feldwarte
r-4 Search [{—~=~ =+ TableFields FH{—=— - TableField F}—{ 1] Field |
: : T e 1.
: E Feldwerte
| -4 MultiFields 3~ - Field
E 0.
' Feldwearte
-+ Fields [
[Objost Bf—{(—~w) iie ol
ibjektingtanz . 1:'"';"“ HiFioids [
E CMS-Mehrfachpararneterfeld
' ar
-4 Tablefields []
E DMS-Tabellencontrals
L4 Remarks [
Extension of the XML format:
Action table
Search Parameter Possible Explanation
result name parameter value
[Hits]
0 Action0 INSERT [Default] | Insert. See DMS.XMLInsert
NONE Execute no action
ERROR Create error message
1 Actionl NONE Execute no action
UPDATE [Default] | Update object [Default]. See
INSERT DMS.XMLUpdate
Insert at location of the found object.
See DMS.XMLInsert
>1 ActionM NONE Execute no action
UPDATE Only update the first object. See
INSERT DMS.XMLUpdate
ERROR Insert at location of the first found
[DEFAULT] object. See DMS. XML Insert
Generate error message

If the object’s location is specified or limited, the location will be used for the search as well as for
inserting. The search can also be used to determine the location. If no location is specified and no
object is found, it is not possible to insert a register or document. In this case, an error message will be
generated .

If no search fields are specified, the object will be inserted.

enaio® Page 63

enaio® server-api enaio®

Example:

In the following example, within an address element, the telephone number of a contact person will be
changed.

<?xml version="1_.0" encoding="UTF-8"7?>
<DMSData>

<Archive name="addresses'>

<ObjectType name="addresses"'>

<Object>

<Search>

<Fields>

<Field name="contact person:*>Schaumer</Field>
<Field name="first name:'>Harald</Field>
</Fields>

</Search>

<Fields>

<Field name="Telephone:">0815-12345</Field>
</Fields>

</Object>

</ObjectType>

</Archive>

</DMSData>

DMS.XMLUnknownToKnown
Description:

This job changes a typeless document into a document with a type. Typeless documents are located
either in the user tray or in the workflow tray. The 'INWFTRAY" option or the 'INUSERTRAY' option
should be activated in the job, as should the 'ISTYPELESS' option. The type which is intended for the
document is specified in the 'ObjectType' tag and the 1D of the typeless document is the ‘object_id"'
attribute in the 'Object' tag.

Parameter:

Flags (INT): general options for the job (see Flags)

Options (STRING): Semicolon-separated job options

(e.g. INWFTRAY=1;CHECKACCESS=0) (see Options)

XML (BASEG64): contains object description in XML format (see The XML Parameter)
JobUserGUID (STRING): determines the user context (see The JobUserGUID Parameter)
Note:

The following XML examples always contain all tags and tag attributes which can be used for the
respective actions. Of course, unnecessary tags and attributes can be dropped.

Example:

XML for typing an typeless document.

<?xml version="1_.0" encoding="UTF-8"7?>

<DMSData>
<Archive id="-1" name="press archive" internal_name="" osguid=""">
<ObjectType table="" id="-1" name="press archive" internal_name=""

osguid=""" type="FOLDER">
<Object object_id="54">

<Fields>
<Field dbname=""" system=""" name="'specialist area"
internal_name=""" osguid=""">Software development</Field>

enaio® Page 64

enaio® server-api enaio®

<Field dbname="field2" system="0" internal_name=""

osguid=""">test user</Field>

</Fields>

<TableFields>

<TableField dbname="table" system="0" name=""" internal_name=""">

<Row>

<Field name="description" internal_name=""
dbname=""">Documentation</Field>

</Row>

</TableField>

</TableFields>

<Remarks>

<RemarkText action=""INSERT" color="WHITE">A note on the folder.</RemarkText>
<RemarkObject action="INSERT" object id="123" object_type='"196616"">Link
note</RemarkObject>

</Remarks>

</Object>

</ObjectType>

</Archive>

</DMSData>

XML Export (Search)

Index data and DMS object information can be searched with the export function of the DMS
Executor.

DMS.GetObjDef
DMS.GetObjectTypeByID
DMS.GetResultList
DMS.GetObjectDetails
DMS.GetDeletedObjects
DMS.GetlLinkedObjects
DMS.SelectDistinctFieldValues
DMS.GetUserTrayObjects
DMS.ExecuteStoredQuery
DMS.GetStoredQuery
DMS.AddStoredQuery
DMS.UpdateStoredQuery
DMS.RemoveStoredQuery
DMS.ConvertQuery
DMS.GetObjectHistory
DMS.GetShadowData
DMS.GetObjectsByDigest

w W W W W W W W W W W W W W W W W

DMS.GetObjDef

Description:
This job returns all object definitions in XML format.

Parameter:

enaio® Page 65

enaio® server-api enaio®

Flags (INT): options for this job
§ 1 =the object definition is returned by the sRet parameter or otherwise as XML file

§ 2 =visible cabinets and objects without field information are returned Visibility is checked based on
the 'Security system' object flag.

8 4 =images of the object definition are returned Base64-encoded in the XML return.
§ 4096 = the XML document is encoded as UTF-8, otherwise UTF-16

Return values:

[FileCount] (INT): 1 = Output file was successfully created, otherwise 0

[sRet] (BASE64): Obiject definition in XML format

[File list]: path and name of the XML file containing the object definition

Example:

Object definition in XML format

<?xml version="1_.0" encoding="UTF-8"7?>

<asobjdef created=""" version="4.00">

<0S4x/>

<languages>

<language lang_id=""" active=""" name="""/>

</languages>

<cabinet cotype=""" name=""" internal=""">

<object compressionflags="" historyflags="" maintype="" cotype="""
iconid=""" name=""" internal=""" os_guid="" extablename=""" tablename="""

no_dias="0" reference="0" fulltext="0" apply_security="0"
multidoc="0">

<names>

<name lang_id=""" tooltip=""/>

</names>

<fields>

<field classstring="" name=""" fieldname=""" os_guid=
taborder=""" tooltip=""" prnalias="" internal=""">
<names>

<name lang_id=""" tooltip=""/>

</names>

<ids/>

<flags align="left" dt="A" flags="" flagsl="" flags2="""
input_length="0" readonly="supervisor"™ multifield="0"
zeropad="0" control_type="edit" datatype=""text"
constraints="none" required="0" crosscheck="0" color="""
case="0"/>

<field_pos bottom="0" left="0" right="0" top="0"/>
<field_pos bottom="0" left="0" right="0" top="0"/>
<init func="0" init_type="const"/>

<list addon32=""" multiselection="0" order="0">
<rawdata/>

<extra/>

<row/>

</list>

<page/>

</field>

</fields>

<ids oid=""" pid=""" vid="""/>

<frame bottom="0" left="0" right="0" top="0"/>
<multiframe height=""" width="""/>

</object>

</cabinet>

</asobjdef>

enaio® Page 66

enaio® server-api enaio®

DMS.GetObjectTypeByID

Description:

This job can be used to determine the type of an object instance.
Parameter:

Flags (INT): reserved. Has to be 0.

ObjectID (INT): ID of the object instance

Return values:

ObjectType (INT): Object type

The object type generally consists of a main type (highword) and a sub type (lowword). The following
table provides an overview over the supported object types:

Object type Main type Sub type
Folder 0 >=0
Register 99 >=0
Document 1 = Grayscale >=0
2 = B/W module
3 =Color
4 = Windows
5 = Multimedia
6 = e-mail
7=XML
8 = Container
Typeless document in the user tray 200 1-7 (see document main type)
Typless document in the workflow tray 300 1-7 (see document main type)
Portfolio 203 0
Note 32767 1-4

DMS.GetResultList
Description:

This job searches DMS objects which match the search request. DMS target objects and fields are
specified in an XML request document. OS names, internal names, GUIDs and database names can be
used in the XML request document.

General properties of the search request can be set using attributes. These attributes can be set as job
parameters or they can be defined as XML attributes in the root element of an XML search request
with XML attributes prioritized.

Parameter:

Flags (INT): flags to control the output format

enaio® Page 67

enaio® server-api enaio®

§ 0x00000010 = XML result is returned as a file, otherwise as buffer
XML (BASEG64): Search request in XML format (see Detailed Description)

[Encoding] (STRING):coding of the result document. Permitted values: UTF-8 and UTF-16. Default
value is UTF-16.

[Offset] (INT): Offset for first returned dataset. Default=0 (see Browsing Hit Lists)

[PageSize] (INT): number of datasets to be returned; -1 = all (default) (see Browsing Hit Lists)

[MaxHits] (INT): maximum number of hits to be determined per object type; -1 = all (default), 0 = do
not determine (A high value can impact performance.) (see Browsing Hit Lists)

[Sql] (INT): 1 = Sql statements are written to the result document (only LOL); default=0

[Rights] (INT): 1 = additional access rights (open/delete/write) are determined for each object instance
(HOL) default=0 (see Rights)

[Objectinserts] (INT): 1 = number of insertable objects for each object type. Default=0 (see Rights)

[DateFormat] (STRING): indicates how returned date information is to be formatted (see Date
Formats)

[RegisterContext] (INT): 0 = When register clauses are specified, only objects in registers are requested
(HOL) 1=Default (see General Search Behavior)

[ItemDelimiter] (STRING): Separator between the values for linear list as simple text file (see Qutput
Formats)

[RequestType] (STRING): 'LOL', 'INF' or '"HOL' possible

[OutputFormat] (STRING): depending on the search request type 'LOL', 'INF', "'TXT" or ‘"HOL'
possible. (see Output Formats)

[Baseparams] (INT): 1 = basic parameters are returned, in the case of HOL as own XML structure (see
Basic Parameters)

[FileInfo] (INT): 1 = file size in bytes, file extension and MIME type of document files are determined
(see File Information)

[FollowDocLink] (INT): 0 = if activated, the file information of the linked document (green arrow
links) is returned. This option will be evaluated only if [FileInfo=1] and can affect the performance.

[Variants] (INT): 1 =In the case of a document, the variant tree is returned if several variants of this
document exist (see Document Variants)

[Status] (INT): 1 = object status is delivered (including links and specially for documents: module
type, check out and archiving status) (see Object Status)

[CheckParams] (INT): 0 = if no value for a search request parameter, conditions referencing this
parameter are ignored. This is the default value. 1 = an error message will be returned if a referenced
parameter was not defined

[FieldSchema] (STRING): 'MIN' (only object ID), 'ALL" (all index fields) or 'DEF' (user defined)
possible. This setting can be overwritten within the XML request docent by the 'field_schema' attribute
in the <Fields>, <ParentObjects> or <ChildObjects> elements.

[AutoStar] (INT): Specifies whether text fields are to be automatically appended or prepended in the
case of conditions. 1=asterisk is prepended, 2=asterisk is appended, 3=asterisk is prepended and
appended

enaio® Page 68

enaio® server-api enaio®

[QueryLanguage] (INT): Code of the language used for the DMS names in the search request. Default
language=0

[OutputLanguage] (INT): Code of the language to be used for the DMS names of the result document.
Default language=0

[DisableSearchGroups] (INT): If this parameter is set to 1, search groups are not taken into account,
i.e. search conditions are only set for defined field. If the parameter is set to 0 (default), the search
conditions refer to all fields of the corresponding search group.

[JobUserGUID] (STRING): determines the user context (see The JobUserGUID Parameter)

[GarbageMode] (INT): 1=only objects from the trash can are taken into account. 0=objects from the
trash can are not taken into account.

Return values:

Count (INT): number of returned datasets

TotalHits (INT): number of available hits

[FileCount] (INT): only one file is returned

[XML] (BASE64): hit list in XML format

[File list]: name and path of the XML file containing the hit list

Detailed Description

In principle, a search request consists of a specification of the DMS obiject, a selection of return fields
and the specification of search conditions. There is also the possibility of requesting location
information, carrying out full text or basic parameter searches, creating links to objects in other
cabinets, or setting parameters for requests.

DMS — Search Request Types
DMS — Result Formats

General Query Behavior

Creating Queries

Browsing Hit Lists
DMS Reference

w wu w W W W

DMS Search Request Types
In the case of search requests, a basic distinction is made between linear and hierarchical requests. A

detailed search request represents a special case.
Linear search requests/linear object lists (LOL)

Simple index data of objects of a certain type can be requested with linear search requests. Table
control elements and multiple parameter fields are excluded. If documents or registers are searched,
fields of the direct parent register and the folder can be searched as well.

Hierarchical search requests/hierarchical object lists (HOL)

Hierarchical search requests can return the contents of table control elements and multiple parameter
fields as well as child elements, e.g. registers and documents within the requested folder. Object
properties such as document variants, access rights, and notes can be requested additionally.

enaio® Page 69

enaio® server-api enaio®

Next to the functional differences between a linear and a hierarchical search request there is an
important technical difference. Hit lists for linear search requests can be obtained with a set of database
queries. Hierarchical search requests require that in addition to every hit at least one extra database
query is executed for every object instance. Every searched object property increases the number of
database queries for each object instance.

If no table control elements, multiple parameters, child elements or additional properties (document
variants, access rights, notes) are necessary, due to performance reasons, it is recommended to carry
out only linear search requests.

Mixed search requests (MIX)

Due to the above-mentioned substantial differences in performance, there is a third search type, which
is called mixed search request. It is a mix of a linear and a hierarchical search request which can be used
to query detailed information concerning folders, registers and information about direct child objects.
A database query is made for each object type of child objects. The implementation scenario
corresponds, for example, to opening a folder to obtain its complete index data and object properties
and to get an overview of all registers and documents located in this folder.

DMS - Result Formats

The XML format of the search results always starts with the <DMSContent> element. It contains a
‘format’ attribute which can have the values LOL for linear object list, HOL for hierarchical object list
and MIXED for mixed hit lists.

Lol (Tabellatisches Farmat)

—] Archive [ﬁj—(—u-—jEI—LOhjec’tTypE [ﬁ]—(—fia— =
1.0 1.0

DMS Schrank DM Objekttyp

,ﬂhjectLiSt
HZL (Hizrarchischer Inhalt)

---E T].!]]ElESSﬂhjE[:‘tS"' —a Typeless0bject ”
DMSContent [== = (E"

Typenlose Objekte aus der 1.
25y DMS Objektinhalta Benutzer- adar Typenlozes Shjekt, Enthil
War:Aowablage 10, HaupttypMadultyp,

Benutzemarne, Seitenzahl
und Zeitsternpel als Attibute

Machrichten

Linear object list (LOL)

Linear object lists (LOL) They are either structured in a table form, i.e. the table header is described
first (<Columns>) and all hit rows (<Rows>) are listed below.

enaio® Page 70

enaio® server-api ‘ enaio®

RowsetType _|
Columns E]_(:E|' 'EECOIumn :‘.
Spalten (M5 Felder) ~ aliniall h“; =

| |
| |
| Spalten-.l;l;'elddeﬁnitil:-n. Drer |
[E?\:tSEF;II-Iitsden Marnen des |
|

| |
| |

Rowset I

LOL [Tabellarizchas Fatrnat)
Rows E]_(*E - Row E—@E}-::Value r
= r----" '\\-? L} ‘- -R-? -1
Treffediste 0. .o 0
Traffer Feldwett
u - -

Ausgefihttes SOL Select
Skakerment

Obersicht tiber Treffarzahl,
Seitengrilie , et

Example:

<?xml version="1.0" encoding="UTF-16" standalone="yes" ?>
<DMSContent format="LOL" version="4.50.582.4137"" timestamp="2004-05-
24T15:18:19" user="ROOT" station="OSEPA">

<Archive name="Patient" id="5" osguid="04C7E64C981C456A9D1F5B12D188A752" >
<ObjectType name="Patient" id="5" osguid="04C7E64C981C456A9D1F5B12D188A752""
type=""FOLDER" table="root6">

<Rowset>

<Columns>

<Column object="Patient" type="FOLDER" name=""Name" datatype="TEXT"
dbname="field2"* ostype="X" size="50">Name</Column>

<Column object="Patient" type="FOLDER" name="First name" datatype="TEXT"
dbname=""field3"* ostype="X" size="50">first name</Column>

<Column object="Patient" type="FOLDER" name="Place" datatype="TEXT"
dbname=""field10" ostype="X" size="50">Place</Column>

</Columns>

<Rows>

D:\Testdata\VirtPC\Queries\HOL\tmp0002.xml - # <Row id="38503">
<value>Abold</value>

<Value>Beate</Vvalue>

<value>Berlin</value>

</Row>

<Row id=""38003">

<value>Abold</value>

<value>Christina</value>

<value>Berlin</value>

</Row>

</Rows>

</Rowset>

<Statistics startpos="0" pagesize="2" total hits="530" />
</ObjectType>

</Archive>

<Messages/>

</DMSContent>

Hierarchical object list (HOL)

Hierarchical hit lists are introduced by the <ObjectList> element. Field definition and field value are
written for every hit object. Hierarchical hit lists can depict any level of hierarchy with the
<ChildObjects> element.

enaio® Page 71

enaio® server-api enaio®

1
Dokurnenteny araten

Kindobjekte
Obijekttyp

+! ChildObjects [} === 2ObjectType [ﬁ}(-f-})

L ExternalObjects

Ver:nipfte Objekte aus anderen Schrinken

Example:

Hierarchical object list

<DMSContent format="HOL" version="4.50.582.4137"" timestamp="2004-05-
24T15:29:03" user="ROOT" station="0OSEPA">

<Archive name="Patient" id="5" osguid="04C7E64C981C456A1F5B12D188A752"">
<I-Folder -->

<ObjectType name="Patient" id="5"
osguid="04C7E64C981C456A9D1F5B12D188A752" type="FOLDER" table="root6">
<!-Folder list -->

<ObjectList>

<Object id="37751">

<Fields>

<Field name="PatientID" datatype=""TEXT" dbname="field1l" ostype="X"
size="20">777777</Field>

<Field name="Name" datatype="TEXT" dbname="field2"* ostype=""X"
size="50">Sandmann</Field>

<Field name="First name" datatype="TEXT'" dbname="field3" ostype="X"
size="50">Sandor</Field>

</Fields>

<I-Child objects of the folder a
<ChildObjects>

<I-Register -->

<ObjectType name="Visit" id="6488064"
osguid="A90F043941488DB43B69CBDA" type=""REGISTER" table="registerl'>
<ObjectList>

<Object id="3226"">

<Fields>

<Field name="first name" datatype="TEXT" dbname="field62" ostype="X"
size="20">987654</Field>

<Field name="Begin" datatype="DATE" dbname="datel" ostype="D"

enaio® Page 72

enaio® server-api enaio®

size="10">2003/10/01</Field>

<Field name="end" datatype="DATE" dbname="date2" ostype="D"
size="10" />

</Fields>

<-- Child objects of the register -->

<Childobjects>

<I-Document type "doctor®s letter' -->

<ObjectType name="doctor’s letter id="262273" osguid=""14799BCD39A920AF3"
type="DOCUMENT" module="WINDOWS" table="0bject162">
<ObjectList>

<Object id="37744"">

<Fields>

<Field name="begin" datatype="DATE" dbname="datel" ostype="D"
size="10">2003/11/12</Field>

<Field name="creat. doctor" datatype="TEXT" dbname=""field1"
ostype="X" size="50">DEMO</Field>

<Field name="type" datatype="TEXT" dbname="field3" ostype="X"
size="20">doctor"s letter operative</Field>

<Field name="status" datatype="INTEGER" dbname="count2"
ostype="9" size="1" />

</Fields>

</Object>

</ObjectList>

<Statistics startpos="0" pagesize="b" total_hits="1" />
</ObjectType>

</ChildObjects>

</Object>

</ObjectList>

<Statistics startpos="0" pagesize="b5" total_hits="1" />
</ObjectType>

</ChildObjects>

</Object>

</ObjectList>

<Statistics startpos="0" pagesize="b" total_hits="1" />
</ObjectType>

</Archive>

<Messages />

</DMSContent>

Appearance of field values

Field values are generally displayed as XML element text. However, for some field types the value in the
database is different from the displayed value, for example for:

Time

Timestamp

Radio buttons
System field owner
Trees

Lists

w W W W W W W

Special values like: direction and question etc.

For these field types, the database value is returned as 'value' attribute while the displayed text is
contained in the XML element text.

LOL example:

<Value value=""M">male</value>

enaio® Page 73

enaio® server-api enaio®

HOL example:

<Field value="M" name="gender* datatype="TEXT" dbname="field7*
ostype="X" size="1">male</Field>

The <Statistics> element

At the end of any hit list is a <Statistics> element which contains data about the number of results.
This information is especially important for Browsing Hit Lists.

<Statistics startpos="20" pagesize="20" total hits="50" />

The <Messages> element
Information on invalid searches is found in the <Message> elements.

Example:

<Messages>

<Message faultcode="-2116351928" sourcecode="475">the full text request could not
be carried out because a search text was not indicated.

</Message>

</Messages>

Combination of search types and output formats

The default output format for linear search requests is the above-mentioned LOL-XML format. It is
also possible to query linear hit lists in a simple text format or in the HOL-XML format. This is done
by using the 'OutputFormat’ parameter.

With the text format, the values are separated by a delimiter which can be specified in the
"ItemDelimiter’ parameter.

Output format
TXT | LOL | MIX | HOL
LOL | + + - +
Search MIX B} N N
request type
HOL - - +

General Search Behavior

For a search, search conditions can be laid down for one or multiple object types. For example for a
document search request, conditions can be set for a register and a folder.

A special search behavior has been set for the enaio® client. If search requests contain register
conditions — set by the user or the rights system — the search behavior for search requests in enaio®
looks as follows:

Rule for documents:

Search for all documents contained in a register which fulfills the search criteria and for all documents
which cannot be found in a register.

Rule for folders:

Search for all folders contained in a register which fulfills the search criteria and for all folders which do
not contain a register.

enaio® Page 74

enaio® server-api enaio®

In the 'GetResultList' job, the behavior can be controlled with the 'RegisterContext’ job parameter and
the 'registercontext’ XML attribute respectively. If the parameter is not indicated or if it has the value 1,
the search behavior will be active, if the value is 0, it will be deactivated.

Create Search Requests

To create a search requests, the DMS objects and fields to be searched will have to be defined at first.
DMS objects and fields can be identified using

§ descriptive names (‘name’ attribute)
§ internal names (‘internal_name' attribute)
8 OSGUID (‘osguid' attribute)

8 database table names or column names (‘table’ or 'dbname’ attribute)

Example of a simple query

All folders of the 'Patient’ cabinet are requested with the following search request. Since object names
within a cabinet do not have to be unambiguous — e.g. a document type can have the same name as a
folder type — the object type can be defined using the 'type" attribute. Valid values are 'FOLDER’,
'REGISTER' and 'DOCUMENT".

By assigning the value 'ALL' to the ‘field_schema' <Fields> attribute, the DMS executor is instructed to
return all DMS fields of the queried object, i.e. in this case the patient folder.

<?xml version="1.0" encoding="UTF-8" ?>
<DMSQuery>

<Archive name="Patient>

<ObjectType name="Patient" type="FOLDER" >
<Fields field_schema="ALL"/>
</ObjectType>

</Archive>

</DMSQuery>

Define fields

If not all index data are required, only the intended fields can be specified. The 'field_schema' fields
attribute must then be set to 'DEF'.

<?xml version="1.0" encoding="UTF-8" ?>
<DMSQuery>

<Archive name="Patient>

<ObjectType name="Patient" type="FOLDER" >
<Fields field_schema="DEF">

<Field name="Name"/>

<Field name="First name"/>

<Field name="ZIP code / city"'/>

<Field name="Place"/>

</Fields>

</ObjectType>

</Archive>

</DMSQuery>

Radio buttons

Radio buttons play a special role as they represent a group of fields. If such a group contains a static
group field, it can be used as a search field. Apart from that, any single list box can be selected to
represent the group.

enaio® Page 75

enaio® server-api enaio®

System fields

System fields can also be queried with the <Field> element. The 'system' attribute therefore has to be
set to 1. System fields can be indicated by an internal name, a GUID or their database field name. An
overview of the available system fields can be found in DMS Reference. In the following example, the
number of document files is queried in addition to all index data of the 'Images’ object.

<?xml version="1.0" encoding="UTF-8" ?>

<DMSQuery>

<Archive name="Patient'>

<ObjectType name="Images" type="DOCUMENT" >
<Fields field_schema="ALL"/>

<Field internal_name="OBJECT_COUNT" system="1"/>
</Fields>

</ObjectType>

</Archive>

</DMSQuery>

Sorting

In order to sort the hit lists of a LOL search request according to certain fields, the 'sortpos' attribute
has to be set to a value greater than 0. Additionally, with the 'sortorder’ attribute, the results can be
sorted in an ascending (ASC value) or descending (DESC value) order. If the 'sortorder" attribute is not
indicated, the results will be displayed in an ascending order unless the 'sortorder’ attribute has been
explicitly set for a field with higher sorting priority. In such a case, the value will also be assigned to the
following fields without this attribute.

If the 'sortpos' attribute has been set for several fields, the fields with a lower 'sortpos' value will have
higher priority.

The following search request queries all registers of the 'admission’ type in the 'patient’ cabinet. All
index data as well as the number of document files will be queried. The hits will be sorted in an
ascending way by the "author’ field and afterwards in a descending way by the 'date’ field.

<?xml version="1.0" encoding="UTF-8" ?>
<DMSQuery>

<Archive name="Patient'>

<ObjectType name="Admission" type="REGISTER" >
<Fields field_schema="ALL"/>

<Field name="Author" sortpos="1" sortorder="ASC"/>
<Field name="Date" sortpos="2" sortorder="DESC"/>
</Fields>

</ObjectType>

</Archive>

</DMSQuery>

Results of hierarchical search requests cannot be output in a sorted way.

Search conditions

Conditions can be defined not only for the requested object but for parent and child objects too.
Therefore the clause object (ConditionObject attribute) for which the search conditions are to apply
needs to be firstly defined. Search conditions for several objects can be defined simultaneously in a
search request.

In the following example, all patients who were admitted to ward 1 on January 1, 2004 and who are
taller than 180 cm will be retrieved.

| <?xml version="1.0" encoding="UTF-16" ?>

enaio® Page 76

enaio® server-api enaio®

<DMSQuery>

<Archive name="Patient'>

<ObjectType name="Patient” type="FOLDER">
<Fields field_schema="DEF">

<Field name="Name"/>

<Field name="First name"/>

<Field name="ZIP code / city"'/>

<Field name="Place"/>

</Fields>

<Conditions>

<ConditionObject name="Visit" type="REGISTER">
<FieldCondition name="Station" operator="=">
<Value>1</value>

</FieldCondition>

<FieldCondition name="Start''>
<value>2004/01/01</Vvalue>

</FieldCondition>

</ConditionObject>

<ConditionObject name="Body mass" type="DOCUMENT">
<FieldCondition name="Height [cm]" operator=">">
<value>180</Value>

</FieldCondition>

</ConditionObject>

</Conditions>

</ObjectType>

</Archive>

</DMSQuery>

As can be seen in this example, the '>' operator (operator=">" attribute) has to be encoded so that
the document is XML-compliant. If no operator is indicated in a condition, the operator =" will be
used. Following relational operators are valid:

Relational operators

Operator XML-compliant format

< <

<= <=

I= I=

<<New >
configuration

name>>

>= >,=
BETWEEN BETWEEN
NOT BETWEEN |[NOT BETWEEN
IN IN

NOT IN NOT IN
Wildcards

enaio®

Page 77

enaio® server-api ‘ enaio®

The same wildcards as in enaio® client can be used for search requests on text fields.

Placeholder = Description

* any string

? Single character

~ Phonetic search (only MSSQL and Oracle)

The backslash is used as an escape character, i.e. /? is used to search for a question mark.

Zero value

The <NULL/> element is available to check a value for ZERO, and it has to be used instead of a
<Value> element.

Special values

Special values can be depicted with the <SpecialValue> element. The following values are therefore
available:

#COMPUTER-GUID#" GUID of the logged-on user's computer
#COMPUTER-NAME#" Name of the logged-in user's computer
#COMPUTER-IP#" IP address of the logged-on user's computer
#CREATOR#" Link to the basic parameter field "Creator"
#CREATIONDATE# Link to the basic parameter field "Date of creation"
#ARCHIVIST# Link to the basic parameter field "Archivist"
#ARCHIVINGDATE#" Link to the basic parameter field "Date of archiving"
#USER#" Name of the logged-on user
H#OWNER#" Link to the basic parameter field "Owner" which contains the
owner's GUID
"#DATE# current date

Characteristics of the DMS field types
Search conditions for table fields

Dialog elements of the table type have one or multiple columns which can be individually queried. In
the XML request format this looks as follows:

enaio® Page 78

enaio® server-api ‘ enaio®

_______ |

| | FieldConditionType _i |

| | o

’TahleComlition —--—le|—| TableColumn 13 = | |
nat implernented et | I 1. I 1.0 | |
| ;o

____ oo —-——]

Instead of a <FieldCondition> element a <TableCondition> element is indicated to which the table is
referenced. The <TableColumn> element defines the table column for which the search criterion will
be established.

Example:

<DMSQuery>

<Archive name=""Test cabinet">
<ObjectType name="WinDoc">
<Fields field_schema="ALL" />
<Conditions>

<ConditionObject name="WinDoc">
<TableCondition name="MyTable">
<TableColumn name="1st column" operator="=">
<vValue>1l</value>

</TableColumn>
</TableCondition>
</ConditionObject>
</Conditions>

</ObjectType>

</Archive>

</DMSQuery>

List with multi-selection
In multi-selection lists the wildcard *' is always added in front or behind the search term.
Date

Basically, the date can be indicated in all valid formats. The following rule applies to two-digit years:
when the entered year xy is smaller than 50, the date will become 20xy. When the entered year xy is
bigger than or equal to 50, the date will become 19xy.

Example:

04 leads to 2004
76 leads to 1976

If the equal sign is used for an incomplete date, a corresponding time period will be searched.

Example:
=1999 leads to BETWEEN 1999/01/01 AND 1999/12/31
I=1999 leads to NOT BETWEEN 1999/01/01 AND 1999/12/31

If two values (with two <Value> elements) are indicated within a date condition, they are
automatically treated as one area and a 'BETWEEN' or 'NOT BETWEEN' is used in the SQL statement.

Text

The LIKE operator is automatically used if wildcards are used.

enaio® Page 79

enaio® server-api enaio®

Radio buttons

If a search criterion is used for a radio button group, a possibly available group field as well as any
radio button field of the group can be used to set the search criterion.

Boolean (AND/OR) links of conditions

By default, search conditions are linked with a logical AND. However, there is also the possibility to
link search conditions with OR or any combination of AND and OR. For this purpose, the various
field conditions have to be grouped using the <FieldGroup> element. Field groups may contain other
field groups.

<ConditionObject name="Press archive'>
<FieldGroup operator="0OR'>
<FieldCondition name="Specialist area'>
<value>Technology</value>
</FieldCondition>

<FieldCondition name="Created by:">
<value>Schmitz</value>
</FieldCondition>

</FieldGroup>

<Created>

<From>2002/01/01</From>
<T0>2003/12/31</To>

</Created>

</ConditionObject>

Link of the conditions with multiple <ConditionObject> elements

As already mentioned, conditions can be defined for several object types within a search request. If
multiple <ConditionObject> elements refer to the same object type, the contained conditional groups
will be linked with OR.

Full text conditions

A full text search can be carried out with the <Fulltext> element if the system is configured
accordingly. Regular expressions can be written as text of the <Fulltext> element. If 'RetrievalWare'
instead of the MS Indexserver is used for full text indexing, additional parameters can be set as
attributes of the <Fulltext> element to control the search result. These attributes match the
RetrievalWare settings as they can be configured in the client.

enaio® Page 80

enaio® server-api ‘ enaio®

Einstellungen |
----- 5] Felder
----- 2] anmerkungen
----- $] Arbeitsbersich r~ Suchart Sprachauswahl
----- 8] Ergebnisfenster " Boalean [+ Deutsch
----- %] anfragewverhalten 8 (" Engiissh
52| Bestatigen
Auko-...
Weitere
Oberflache Maximale Anzahl D okumente/Objekte: | 993 ::II
5] workflow
----- 7] Retrievaliare B Einstellungen
E=PAMNSION_LEVEL _PROPERTY 4
FUZZY_SPELL_HALF_WORDS False
FUZZY_SPELL_THRESHOLD u]
Max_FUZZY_SPELL_PROPERTY 15
Max_REG_EXPR_PROPERTY 4

WARN_MAYX_REG_EXPR_PROPERTY False
WORD_EXPANSION_LIMIT_PROPERTY 20
ADDITIONAL_PARAMS

oK | abbrechen | Ulgernehmen|

name Type Use Default
EXPANSION_LEVEL PROPERTY xs:short Optional | 4
FUZZY SPELL HALF WORDS xs:boolean Optional | false
FUZZY_SPELL_THRESHOLD xs:short Optional | 0
MAX FUZZY SPELL PROPERTY xs:short Optional | 15
MAX_REG_EXPR_PROPERTY xs:short Optional | 4
WARN_MAX REG_EXPR_PROPERTY xs:boolean Optional | false
WORD_EXPANSION_LIMIT_PROPERTY | xs:short Optional | 20
Mode FullTextSearchModeType (Pattern | Optional | Pattern
| Boolean | Concept)

The result of the full text search is limited by optionally set conditions on index data.

Location information

When searching for documents or registers it is very often desirable to obtain information about the
location, e. g. folders or parent registers. Therefore it is set in the <ParentObjects> element to which
extent information about parent objects is to be queried.

Linear search requests can be set for the folder and a maximum of one register. Folder, register and
object fields are displayed in a hit line.

With hierarchical queries, the whole object path is specified if a <ParentsObjects> element exists. With
<SubObjectType> elements, fields can be specified for the folder and single registers.

enaio® Page 81

enaio® server-api enaio®

Export of hierarchical structures

Hierarchical search requests differ from linear search requests, especially because whole object
structures can be exported. First, the search for the superior object is specified as described before. The
search request will get the <ChildObject> element as sub element. This element contains the attributes
‘export_depth' and 'child_schema'.

DMS-Felder

ObjectType :|—|—--— T ;oeeemoeees

--- ParentObjects
Anzufragender L]
CMS-CObjekityp

%]
&
3
=1
=
5]
C]
]

Einschrinkungen Rir
Suchanfragen baw, Updates

Eindeutige Kennzeichnung
der Cbjektinstanz

Specification of export depth

The "export_depth' attribute sets the export depth, i.e. the number of the object levels which will be
exported. 0 means that no child objects are exported, 1 only exports direct child objects, etc.

Specification of object schema
The following values are available for the ‘child_schema' attribute:

Value = Description
DEF | User-defined

REG | All registers are automatically added.

DOC | All documents are automatically added

ALL | All registers and documents are automatically added.

Specification of child object types

Certain child object types can be set with the <ChildObjectType> element. Within
<ChildObjectType> elements, fields can be set according to the same rules as the main search object.

Note:
A child object type is allowed only once in the child object type list.

enaio® Page 82

enaio® server-api ‘ enaio®

Anzufragendes Felder des
angefragten Chbjekityps. Fir
Felationstabellanfalder rmuss
daz Attribut 'swstern' auf 1
- - gesetzt werden und Fir das
ChildObjectType E]_(_'“_ = attibut ‘internal_narme' einer
der folgenden Marmen
geweshlt werden:
Folder_id''register_id','ragiste
r_type'

L=
I
'

Restrictions for child objects
The selection of child objects can be limited further by additional conditions.

— 5FieldCondition
Einschrinkung auf DMS-Feld

ChildConditions E]—(—/Ea—p—
1o

DMS-Ausdrck,

L{, TableCondition

Basic parameter searches

It is possible to search for folders, registers, and documents using basic parameters. After a cabinet has
been defined with the <Archive> element, the details for a folder, register or document search can be
set using the basic parameters.

---------- bl

-- -: Params

DMSGuery [

1
r-

' '
'

]

'

L

- -: FulltextGuery

Within the corresponding element (<FolderBaseParams>, <RegisterBaseParams> or
<DocumentBaseParams) the following search conditions can be defined for the basic parameters:

XML element Description

<Creator> Creator

<Created> Creation date:

<Modifier> User who modified the object last

<Modified> Date of the last modification If two values are indicated, the
period between these dates will be searched.

enaio® Page 83

enaio® server-api enaio®

<Owner> User name of the owner

<ArchiveState><ArchiveStateValue> | For documents: archiving status. Permitted values:
ARCHIVED, ARCHIVABLE, NOT_ARCHIVABLE,
NO_PAGES, PAGE_ERROR, REFERENCE

<Locked><LockStateValue> For documents: Check-out status. Permitted values:
UNLOCKED, SELF, OTHERS, EXTERNAL

Ilird der Wert Fir das 0.
aerbut ‘child_scherna' auf Chjekrtyphestelgung fir
ALL' gesetzt, werden alle Kindobjekta, Attibube wis
Objekttypen angefrage, rnit irn &l object Typetat;

' dem Wert 'DEF' nur die dber .
v die #loChildObject Typedd; Elermet
1 Elermente definierten

v Objekirypen, Miche Rir LOL

i Anfragen verwendbar,

L-- Creator EI—(—--— I;Ualue ”

1.2
Wert Fir die Bedingung als
Elarnenttext,

Dokurnentenrecharche Gber
Bazispararneter,

1.0
Wert fir die Bedingung als
Elarnenttext,

1.0
et Fir die Bedingung als
Elernenttext,

--a,Locked

enaio® ‘ Page 84

enaio® server-api enaio®

With the <ChildObject> element, the selection of object types can be limited or the field selection and
the sort sequence in the hit list can be defined.

Full text searches

If full text indexing is configured in enaio®, a search against all object types accordingly configured in
the graphical editor can be carried out. For this purpose, after specifying the cabinet with the
<Archive> element, the full text regular expression is indicated with the <Fulltext> element in the
<FulltextQuery> element. Details about the <Fulltext> element can be found in the section Full Text
Conditions.

With the <ChildObject> element, the selection of object types can be limited or the field selection and
the sort sequence in the hit line can be defined.

Example:

Full text search for the word 'meningitis’ in all referral letters and diagnoses.

<?xml version="1.0" encoding="UTF-8" ?>
<DMSQuery>

<Archive name="Patient>
<FulltextQuery>

<ChildObjects child_schema="DEF">
<ObjectType name="Doctor's letter->
<Fields>

<Field name="Date" />

<Field name="Senior doctor" />
<Field name="Type" />

</Fields>

</ChildObjectType>

<ObjectType name="Diagnosis">
<Fields field_schema="ALL" />
</ChildObjectType>
</ChildObjects>

<Full text>Meningitis</Full text>
</FulltextQuery>

</Archive>

</DMSQuery>

Parameterization of search requests

To make it easier to reuse search requests, search conditions can be parameterized. All parameters
below the <DMSQuery> element are defined and initialized. In the search conditions, these parameter
values can be referenced with their parameter name using the 'ref' attribute in the <ParamValue>
element.

Example:

<DMSQuery>

<Params>

<Param name="PatlD''>3987</Param>
</Params>

<Archive name="Patient>

enaio® Page 85

enaio® server-api enaio®

<ObjectType name="Patient>
<Fields field_schema="ALL" />
<Conditions>

<ConditionObject name="Patient'>
<FieldCondition name="PatientlD">
<ParamValue ref="PatlD" />
</FieldCondition>
</ConditionObject>
</Conditions>

</ObjectType>

</Archive>

</DMSQuery>

Thus, a client application can change the value for the condition without detailed knowledge of the
search structure by using the parameter.

Multi-cabinet search requests

If information about an object is required in a hit list and the information is contained in an object
from another cabinet, this can be formulated in an HOL search request with the <ExternalObjects>

| SubObjectTypeType

| Fields [
froooeoeias Rt - L A R PO DMS-Fields
Erternalobjects [3-{ || Eternalarchive [j-{ - [| ExternalobiectType B{ - [
1. o | L-4 SubConditions

| only For child objects in HOL
requasts

element.

The <ExternalObject> element will be defined below the <ObjectType> element. An external object is
linked to the initial object with a field reference. For this purpose, an arbitrary alias name is therefore
defined by the 'link_name' attribute of the initial object field which will provide the value for the link.
This alias name is referenced with the 'ref' attribute of the <LinkedValue> in the field condition of the
external object.

Example:

For every B/W document, the address for the author has to be provided.

<DMSQuery>

<Archive name="Press archive'>
<ObjectType name="S/W scans'>
<Fields>

<Field name="Document type" />
<Field name="Author" link_name="Author" />
<Field name="Date" />

</Fields>

<ExternalObjects>

<ExternalArchive name="Addresses >
<ExternalObjectType name="Addresses' >
<Fields field_schema="ALL" />
<SubConditions>

<FieldCondition name="Name:>
<Linkedvalue ref="Author" />
</FieldCondition>

</SubConditions>
</ExternalObjectType>
</ExternalArchive>
</ExternalObjects>

enaio® Page 86

enaio® server-api enaio®

</ObjectType>
</Archive>
</DMSQuery>

Detailed information

Basic parameters

By setting the 'baseparams’ flag to ‘1", all basic parameters will be queried in addition to the index
fields. A separate element group will be created for this purpose, especially in the HOL.

For all object types values for
Creator

Creation date:

Modifier

Modification date

w wu w W wWw

Owner

will be specified. The value for the owner is the name output as text and the user GUID as ‘osguid’
attribute.

The check-in or check-out status and the archiving status as well as retention times are additionally
determined for documents.

<BaseParams>

<Creator>love</Creator>
<Created>2003/12/12</Created>
<Modifier>root</Modifier>
<Modified>2003/12/14</Modified>

<Owner guid="BC1123CDFAAAS’>love</Owner>
<ArchiveState>ARCHIVABLE</ArchiveState>
<Locked>SELF</Locked>

</BaseParams>

Object status

By setting the 'status’ attribute to '1' in the <DMSQuery> element the following status information will
be indicated:

§ Links

And especially for documents:

8 Module type

Archiving status

Checked-in/checked-out

Number of pages

Number of real document pages (system field: OBJECT_DOCPAGECOUNT). If these are known.

w W w w

Rights

By setting the 'rights’ attribute to '1' in the <DMSQuery> element the access rights on every object will
be determined for the searching user. The following rights will be determined:

enaio® Page 87

enaio® server-api ‘ enaio®

Attribute Description

modify_index | The user is allowed to change the index data of an object

delete_object | The user is allowed to delete the object

export_object | The user is allowed to open and/or export the object

modify_object | The user is allowed to edit the document files.

Example:

<Rights modify_index="1" delete object="1" export_object="1"
modify _object="1" />

Object type relations

The number of object instances of a given type can be limited with object type relations. Use the
'ObjectInserts’ job parameter and the 'object_inserts' search request attribute to query the number of
object instances which can still be inserted taking into account object type relations and the rights
system. For every possible child object type which can be inserted according to the rights system, there
is an <ObjectInsert> element below the <Rights> element which has the attributes to indicate the
object type (‘type' attribute) and the number of instances which can be inserted (‘count’ attribute). If
the value for ‘count' is '-1' there are no limits.

Additionally, in the <Rights> element there is the 'object_inserts' attribute which indicates whether
object type relations have been queried.

If the 'rights’ attribute has not been set to '1', the attribute for access rights in the <Rights> element will
be setto "-1".

<Rights object_inserts="1" modify_index="1" delete_object="1" export_object="1"
modify_object="1">

<Objectlnserts type="65536" count="-1" />
<Objectlnserts type="131108" count="-1" />
<Objectlnserts type="131119" count="0" />
<Objectlnserts type="196608" count="-1" />
<Objectlnserts type="196619" count="0" />
<Objectlnserts type="196622" count="-1" />
<Objectlnserts type="262144" count="-1" />
<Objectlnserts type="6488064" count="198" />
</Rights>

File information

By setting the 'fileinfo’ attribute to '1" in the <DMSQuery> element, the following file information will
be extracted for every document and written into a <FileProperties> element as attribute.

For document references (green arrow), file information of the linked document is returned if the job
parameter [FollowDocLink] is set to '1' (or in the <DMSQuery> element). In this case, also the
attributes 'linkid" and 'linktypeid' are written.

The following file properties can be determined:

Attribute Description

count Number of files

enaio® Page 88

enaio® server-api enaio®

size Size of the documents in bytes
extension File type standard extension

mimetype Mime type

linkid ID of the linked object

linktypeid Type ID of the linked object
documentpagecount | Number of document pages (if known)

Example:

<Object id="415">

<FileProperties count="1" size="179489" extension="jpg"
mimetype="image/jpeg"/>

</Object>

Notes

If the DMSQuery attribute ‘'remarks' is set to '1," notes and note links, if available, will be returned for
every requested document. Text notes and object notes (links) will be output. This function is available
for HOL search requests only.

Attribute/day Description

id Note ID

type Note type (1 = white, 2 = yellow, 3 = green, 4 =)

relation With object relation 1

medium Media ID if notes are filed in the work directory, 0 if the note's text is filed in the
database.

Creator Name of the creator with the creator's internal ID as attribute.

Created Date of creation with timestamp as attribute.

Modifier Last editor with the internal 1D as attribute.

Modified Date of the last modification with the timestamp as attribute.

Text Note text with internal ID, if notes have been filed in the database. Empty if it is an
object note.

Example:

<Object id="81">

<Remarks>

<Remark i1d="1413" type="1" relation="0" medium="4">
<Creator id="16">MAIER</Creator>

<Created value="1143560855"">2006/03/28 17:47:35</Created>
<Modifier id="18">SCHMIDT</Modifier>

<Modified value="1946463756"">2006/04/30 14:50:12</Modified>
<Text id=""">Note text</Text>

</Remark>

enaio® Page 89

enaio® server-api enaio®

</Remarks>
</Object>

Language settings
With the 'lang_id' or the ‘query_language' attribute, you can specify in which language the search

request will be carried out. The field names or object names are then searched depending on the
language. Without any specification, the default language will be used.

Icons

By setting the 'icon' attribute in the DMSQuery to '1', the system is instructed to return the icon IDs of
all user-defined icons. The icon IDs from the archive area, as well as user-defined icon IDs from a hit
list will be determined. The DMSContent elements '<Object’ (HOL search request) and ‘'<Row>" (LOL
search request) will additionally get the ‘iconid' attribute.

The cnv.Getlcons job can be used to obtain an image file on the basis of the icon ID.

Document variants

For documents with the 'W-documents' module type, variants can be created and administered in
enaio®. By setting the 'variants' attribute in the DMSQuery element to '1," variants will be determined
for every W-document and output according to their hierarchical structure through
<DocumentVariant> and <DocumentVariants> elements. However, no index data will be determined.

Attribute Description

is_active "1" if this variant is active, otherwise '0".
doc_id Document ID of this variant
doc_ver Version name

doc_parent | ID of the original variant that was used to generate this variant. Note that, IDs of
documents that were already deleted or no longer exist in the system may be contained.

Example:

<DocumentVariant is_active="1" doc_id="64758" doc_ver="Original"
doc_parent="0">

<DocumentVariants level="0">

<DocumentVariant is_active="0" doc_id="73405" doc_ver="1.0.0"
doc_parent="64758">

<DocumentVariants level="1">

<DocumentVariant is_active="0" doc_id="73406" doc_ver="1.1.0"
doc_parent="73405"/>

<DocumentVariant is_active="0" doc_id="73407" doc_ver="2.0.0"
doc_parent="64758">

<DocumentVariants level="1" />

</DocumentVariant>

</DocumentVariants>

</DocumentVariant>

Note:

When searching for W-documents, the active variant will be returned.

enaio® Page 90

enaio® server-api enaio®

Define multiple search requests in a search document
Multiple search requests can be defined in a search document.

Example:

<DMSQuery>
<Archive name="Addresses'>
<ObjectType name="Addresses">

</ObjectType>

</Archive>

<Archive name="Patient'>

<ObjectType name="Color images" alias="F2">

</ObjectType>
<ObjectType name="Grayscale images" alias="G1">

</ObjectType>
<ObjectType name="Color images" alias="F1">

</ObjectType>
</Archive>
</DMSQuery>

To specifically access results of search requests with the same object type, it is possible to use the
optional attribute ‘alias’ in the <ObjectType> element. This alias name will then be returned in the
<ObjectType> elements of the result documents.

For a hierarchical search request with the determination of a location, the attribute will additionally be
written to the folder's <ObjectType> element.

Browsing Hit Lists

To call hit lists by page, a search request has to be carried out multiple times and the starting point has
to be indicated to the job with the 'PageSize' parameter and the 'Offset’ parameter. The maximum
number of hits can be limited with 'MaxHits'.

In the result document you will find the <Statistics> element at the end of a hit list with the attributes
'startpos’, 'pagesize’ and 'total_hits'.

| <Statistics startpos="20" pagesize="20" total_hits="50" />

The element helps you to determine how many hits the queried page actually contains and whether
there are any further hits. The value of the "total_hits' attribute can at most be the maximum value of
the '"MaxHit' input parameter.

Example:

From the total search result only a number of 20 hits is desired to be displayed. At most, only the first
100 hits are of interest. However, in fact 120 objects match the search request. PageSize=20 and
MaxHits=101 are set for every call. If MaxHits was set to 100, it would not be possible to see whether
there are more than 100 hits.

Page Input Output
1 Offset=0 | <Statistics startpos="0" pagesize="20" total_hits="101" />

2 Offset=20 | <Statistics startpos="20" pagesize="20" total_hits="101' />

enaio® ‘ Page 91

enaio® server-api enaio®

3 Offset=40 | <Statistics startpos="40" pagesize="'20" total_hits="101"' />
4 Offset=60 | <Statistics startpos='60" pagesize="20" total_hits="101' />
5 Offset=80 | <Statistics startpos="80" pagesize="20" total_hits="101' />

After calling the first page, the querying person will know that there are (101-1)/20 = 5 pages. With
page 5, startpos + pagesize = 100 and the maximum number of hits is achieved. As there are 101 > 100
hits, the querying person will know that there would have been more results.

DMS.GetObjectDetails
Description:

This job is used to determine index data of a single DMS object. The location is irrelevant. Data of
inactive variants can be determined, too. The result is returned in HOL format in the DMS Content.
All input parameters that can be specified for the job DMS.GetResultList in order to control the output
information can also be used in the same way for GetObjectDetails.

By default, this job sets the request property [FollowDocLink] to '1" if it is not disabled by the job
parameter. This will cause the document properties of the linked DMS object to be returned by default
if [FileInfo] is requested and if it is a document reference object (see File Information).

Parameter:
8 ObjectID (INT): ID of the object instance

ObjectType (INT): object type. If this parameter is not indicated or indicated as value '-1', the job itself
will specify the object type.

[SystemFields] (String): list separated with semicolon from additionally requested system fields. The
internal names of system fields are expected (see System Fields). If basic parameters, status, file info are
requested, they are given priority, i.e. the information requested with SystemFields is returned in the
corresponding results block (e.g. within <baseparams>) and not redundantly returned.

Example: SystemFields=OBJECT_MEDDOCID;OBJECT_MEDDOCNA
Other possible parameters: See job DMS.GetResultL ist

Return values:
XML (BASE64): index data in XML format

DMS.GetDeletedObjects
Description:

This job is used to output the contents of the trash can of the logged-on user. The result is returned in
DMS Content format. The same output format options apply as for the job DMS.GetResultL ist.

A query within the trash can can be performed, too. To do so, a query in DMSQuery XML format
must be stated and passed as an "XML' parameter.

Parameter:

Flags (INT): flags to control the output format

§ 0x00000010 = XML result is returned as a file, otherwise as buffer
§ 0x00001000 = XML result is encoded as UTF-8, otherwise UTF-16

enaio® Page 92

enaio® server-api enaio®

[UserID] (INT): ID of the user whose trash can is to be read. With the value -1

the whole system trash can will be read, the default value '0' indicates the logged on
user. To read the system trash can or the trash can of another user, the system role ‘enaio® Client: View
system trash can' is required, access is otherwise denied ‘error code (-1069).

§ [XML] (BASE64): Search request in DMSQuery format

[CheckParams] (INT): 0 = if no value for a search request parameter, conditions referencing this
parameter are ignored. This is the default value. 1 = an error message will be returned if a referenced
parameter was not defined

Return values:

Count (INT): number of returned datasets
TotalHits (INT): number of available hits
Depending on the input flag

[XML] (BASE64): hit list in XML format
Or

[FileCount] (INT): only one file is returned
[File list]: name and path of the XML file containing the hit list

DMS.GetLinkedObjects

Description:

This job is used to output objects linked to a given object. The result is returned in DMS Content
format. The same output format options apply as for the job DMS.GetResultList.

The output does not comprise any notes. In addition to the index fields (see output format option
'FieldSchema’) the Relations GUID is returned:

Example: <Column object="S/W-Scans" type="DOCUMENT" name="osrelid" system="1" datatype="TEXT"
dbname="osrelid" ostype="X" osguid="1300" size="32">HYP_ID</Column>

Parameter:

Flags (INT): flags to control the output format

§ 0x00000010 = XML result is returned as a file, otherwise as buffer

ObjectID (INT): object ID whose the links are to be displayed

Return values:

TotalHits (INT): number of linked objects

Depending on the input flag

[Result] (BASE64): object list in XML format (or simple text format if required)
Or

[FileCount] (INT): only one file is returned
[File list]: name and path of the XML file containing the hit list

enaio® Page 93

enaio® server-api enaio®

DMS.GetForeignObjects
Description:
This job can be used to determine all objects with a document reference to a given object (aka green

arrow link). The result is returned in DMS Content format. The same output format options apply as
for the job DMS.GetResultList.

Parameter:
Flags (INT): flags to control the output format
§ 0x00000010 = XML result is returned as a file, otherwise as buffer

ObjectID (INT): ID of the target object whose document links are to be displayed. The target object ID
of the green arrow link.

[ObjectTypes]: (STRING) a semicolon-separated list of the link types. If this parameter is not set, all
types from all cabinets are searched. The link type can be transferred as a type ID or as an internal
name of the type. If an archive (cabinet) is transferred as the type, all the document types it contains
are used as source type.

Example: ObjectTypes=1;internal_email ;262432

All document types from the cabinet with the ID 1, one document type with the internal name
"Interne_email," and documents with the object type ID 262432 are considered as source types.

The job otherwise supports the same input parameters as DMS.GetObjectDetails or
DMS.GetResultList.

Return values:
TotalHits (INT): number of visible document link objects to the target object.

TotalForeignObjects (INT): total number of document links to the target object. The security system is
not considered when determining the number. If the input parameter "ObjectTypes" is used, only the
number of links found in the specified types is returned.

Depending on the input flag
[Result] (BASE64): object list in XML format (or simple text format if required)
Or

[FileCount] (INT): only one file is returned
[File list]: name and path of the XML file containing the hit list

DMS.SelectDistinctFieldValues
Description:

This job returns a list of all values of a given DMS field. Table control elements and multiple parameter
fields cannot be included.

Parameter:

8 Flags (INT): always 0

8 ObjectType (INT): Object type
FieldName: (STRING):field name

enaio® Page 94

enaio® server-api enaio®
[Notation] (INT): type of field name: 0 (Default) = DMS name, 1 = internal name, 2 = database field
name

[Filter:] (STRING):restriction/search criteria. An * is automatically appended for text fields.
[SortOrder] (STRING):sort order. Permitted values: '‘ASC' (default) or 'DESC'

[MaxHits] (INT):max number of values to be returned. Default=-1 (all)

Return values:

TotalHits (INT) total field value number

Count (INT): number of output field values (see input parameters Max Hits)

FieldValues (BASE64): object list in the UTF-8 encoded DMSFieldValueList XML format:

Feldeigenschaften

| DmsFieldValueList S} ——]

Liste aller Warte eines Feldes

0.
Feldwert

DMS.GetUserTrayObjects
Description:

This job returns objects with a type as well as typeless objects from the logged-in user's filing tray. The
result is returned in DMS Content format. The same output format options apply as for the job
DMS.GetResultL ist.

Parameter:

Flags (INT): flags to control the output format

§ 0x00000010 = XML result is returned as a file, otherwise as buffer
Return values:

TotalHits (INT): number of objects in the user tray

Depending on the input flag

[Result] (BASE64): object list in XML format

Or

[FileCount] (INT): only one file is returned
[File list]: name and path of the XML file containing the hit list
Example of an output (HOL format):

<DMSContent format="HOL"™ version="4.60.617.4328" timestamp=""2004-12-03T14:25:01"
user="LOVE" station=""MLOVE'>

<Archive name="press archive" 1d="1" osguid=""8EE74447EFC7430F8793F2939A9C044F">
<ObjectType name="Word texts' 1d='"262144" maintype="4" cotype="0"
osguid=""838360EF620443EF9A66A280CF52F4AE" type=""DOCUMENT" module="WINDOWS"
table="object2">

<ObjectList>

<Object 1d="73145">

<Fields>

enaio® Page 95

enaio® server-api enaio®

<Field name="links" system="1" datatype="INTEGER" dbname="links" ostype="9"
osguid="1114" size="10">0</Field>

<Field name="count" system="1" datatype="INTEGER" dbname="count' ostype="9"
osguid="1101" size="10">1</Field>

<Field value="2" name="flags" system="1" datatype="INTEGER" dbname="flags"
ostype="9" osguid="1102" size="10">NOT_ARCHIVABLE</Field>

<Field value="0" name="lockuser™ system="1" datatype="INTEGER" dbname="lockuser"
ostype="9" osguid="1116" size="10">UNLOCKED</Field>

<Field value="4" name="maintype" system="1" datatype="INTEGER" dbname=""maintype"
ostype="9" osguid="1108" size="10">WINDOWS</Field>

<Field name="Author" datatype="TEXT" dbname="fieldl" ostype="X"
osguid=""F60B3D9BOE9CAFESAEGCB78E4DE25826" size="50">Love</Field>

<Field name="Source" datatype="TEXT" dbname="field2" ostype="X"
osguid="E3EDAF50F4F4404C860E6043D7894272" size="150">Sourcel</Field>

<Field value="4711" name="Text2" datatype="TEXT" dbname="field3" ostype="X"
osguid=""18C0D7D305DE40BB87A160B1115FC2A3" size="50">Document text</Field>
</Fields>

</Object>

</ObjectList>

<Statistics startpos="0" pagesize="-1" total_hits="1"/>

</ObjectType>

</Archive>

<TypelessObjects>

<TypelessObject 1d="61359" maintype="2" module="BLACKWHITE" user="LOVE"
timestamp="2002/10/18 11:19:10" pagecount="1"/>

<TypelessObject i1d="61360" maintype="2" module="BLACKWHITE" user="LOVE"
timestamp="2002/18/10 11:19:12" pagecount="10"/>

<TypelessObject 1d="63399" maintype="3" module="COLOR" user="LOVE"
timestamp="2003/01/21 15:23:36" pagecount="1"/>

</TypelessObjects>

<Messages/>

</DMSContent>

DMS.GetWorkflowObjects
Description:

This job returns objects with a type as well as typeless objects from the logged-in user's filing tray. The
result is returned in DMS Content format. The same output format options apply as for the job
DMS.GetResultList.

Parameter:

Flags (INT): flags to control the output format

§ 0x00000010 = XML result is returned as a file, otherwise as buffer

ID<1..n> (INT): ObjectIDs. A parameter must be specified for each object instance. For example
ID1=123

ID2=245

Return values:

TotalHits (INT): number of objects actually found in the workflow tray
Depending on the input flag

[Result] (BASE64): object list in XML format

Or

enaio® Page 96

enaio® server-api enaio®

[FileCount] (INT): only one file is returned
[File list]: name and path of the XML file containing the hit list

DMS.ExecuteStoredQuery

Description:

This job can be used to execute saved search requests. The result is returned in DMS Content format.
Parameter:

Flags (INT): flags to control the output format

§ 0x00000010 = XML result is returned as a file, otherwise as buffer

§ 0x00001000 = XML result is encoded as UTF-8, otherwise UTF-16

QueryID (INT): ID of the search request

[CheckParams] (INT): 0 = if no value for a search request parameter, conditions referencing this
parameter are ignored. This is the default value. 1 = an error message will be returned if a referenced
parameter was not defined

If it is a search request with parameters, the request parameters have to be passed as job parameters.
The $ characters, which enclose parameters in the search request, must be omitted, e.g. VARL or
STATS.

In addition, the following parameters can be set for formatting the returned XML document:
RequestType, OutputFormat, BaseParams, Offset, Pagesize, MaxHits, Rights, DateFormat, Variants,
FileInfo, Baseparams. The description of these parameters can be found in the description of the job
dms.GetResultL ist

Return values:

Count (INT): number of returned datasets
TotalHits (INT): number of available hits
Depending on the input flag

[XML] (BASE64): hit list in XML format
Or

[FileCount] (INT): only one file is returned
[File list]: name and path of the XML file containing the hit list

DMS.GetStoredQuery

Description:

This job returns saved search requests in the DMS Query Format. All object fields will be applied in the
list of the queried fields. The same output results apply as for dms.GetResultList.

Parameter:
Flags (INT): Flags must be 0
QueryID (INT): search request ID

enaio® Page 97

enaio® server-api enaio®

[QueryMode] (INT): defines the required search request behavior.

Available values are: Auto (-1)= automatically use what was defined in the search request. Folder(0) =
Query against folders Register(1)=Query against register Dokument(2)=Query against documents
Unfiltered (-2) folders+registers+documents are returned.

Default is 'unfiltered (-2)".

Return values:

[Query] (BASE6G4): search request in XML format (UTF-8 encoded)
[ExpertMode] (INT): 1, if the saved search request is an expert search request.
Example:

Saved search request:

[196608@0]
HOSACT#=1
#OSPOS001#=$STAT1$
[SYSTEM]
NAME=Statl
IDENT=73706
VARREQUEST=1
DEFACT ION=0

Converted search request:

<DMSQuery requesttype="LOL" outputformat=""LOL">
<Params>

<Param name=""$STAT1$"></Param>

</Params>

<Archive name="'press archive">

<ObjectType name="'color images" alias="Statl'>
<Fields>

<Field name="date" system="0"></Field>
<Field name="author™ system="0"></Field>
<Field name="source™ system="0"></Field>
<Field name="'content” system="0"></Field>
<Field name="'viewable" system="0"></Field>
</Fields>

<Conditions>

<ConditionObject name='"color images'>
<FieldCondition name="author' operator="=">
<ParamValue ref="$STAT1$''></ParamValue>
</FieldCondition>

</ConditionObject>

</Conditions>

</ObjectType>

</Archive>

</DMSQuery>

DMS.AddStoredQuery
Description:

This job is used to create a new saved search request. The search request must be transferred in DMS
Query Format. The query will be converted into the internal format for saved searches. As the format
for saved search requests only allows a subset of DMS search possibilities, certain limits apply. See
dms.ConvertQuery.

Parameter:

Flags (INT): Flags must be 0
enaio® Page 98

enaio® server-api enaio®

Name (STRING): Search request name
Query (STRING/BASE®64): search in the DMSQuery XML Format
[TreeParent] (INT): ID of the desktop folder where the search request is located

[Scope] (STRING): scope of application. Allow values: 'public' for public search requests, 'private’ for
user-related search requests. The default value is 'private'.

[lconID] (INT): ID of an icon displayed in the client. Default=0
[DefAction]: Action to be carried out when opening the stored query.
O=execute, 1=edit, 2=determine count. Default=0

Return values:

QueryID (INT): ID of the search request

DMS.UpdateStoredQuery

Description:

This job is used to update an existing saved search request and/or its properties. The search request
must be transferred in DMS Query Format. The query will be converted into the internal format for
saved searches. As the format for saved search requests only allows a subset of DMS search possibilities,
certain limits apply. See dms.ConvertQuery.

Parameter:

Flags (INT): Flags must be 0

QueryID (INT): ID of the search request

[Query] (STRING/Base64) search request in DMSQuery XML format

[Name] (STRING): new name of the search request if the search request is to be renamed
[lconID] (INT): ID of an icon displayed in the client. Default=0

[DefAction]: Action to be carried out when opening the stored query.

O=execute, 1=edit, 2=determine count. Default=0

Return values: none

DMS.RemoveStoredQuery
Description:

This job is used to delete an existing saved search request.
Parameter:

Flags (INT): Flags must be 0

QueryID (INT): ID of the search request

Return values: none

DMS.ConvertQuery
Description:

With this job different search request formats can be converted into each other.

enaio® Page 99

enaio® server-api enaio®

At present, the following formats are supported:

DMS - DMSQuery XML format

STQ - format for saved search requests

ABN —subscription format

Parameter:

Flags (INT): Flags must be 0

Query (STRING or BASE64): Search request type
InputFormat (STRING): input format (DMS, STQ, ABN)
OutputFormat (STRING): output format (DMS, STQ, ABN)

If STQ (saved search request) is chosen as the output format, the following job parameters still have to
be defined.

Name (STRING): query ID

QueryID (INT): ID of the search request

[lconID] (INT): ID of an icon displayed in the client. Default=0
[DefAction]: Action to be carried out when opening the stored query.
O=execute, 1=edit, 2=determine count. Default=0

If ABN (subscription) is chosen as the output format, the following job parameters still have to be
defined.

[GarbageMode] (INT): 1=only objects from the trash can are taken into account. 0=objects from the
trash can are not taken into account.

Return values:

Query (BASE64): search request text. UTF-8-encoded for the DMSQuery XML format, otherwise
ANSI.

Restrictions:

As the search possibilities of the DMSQuery XML format exceed those of other formats, the following
limitations apply for the DMSQuery XML format as input format:

* Hierarchical structures are not supported, i.e. <ParentObjects>, <ChildObjects>, and
<ExternalObjects> are ignored.

* Parameter names must have the format $VARNNN$ or $STATNNN$ where nnn can be a number
between 000 and 999.

* Field groups within conditions cannot be used.
* Only one value can be specified for each condition.
* No conditions can be formulated for basis parameters and system fields.

* Saved search requests (STQ) in expert mode cannot be converted.

DMS.GetObjectHistory

Description:

This job returns the editing history for a given object in XML format.

enaio® Page 100

enaio® server-api enaio®

Parameter:
Flags (INT): Flags must be 0
ObjectID (INT): ID of the object

[LangID(INT)]: Language in which the action descriptions are to be output. Action descriptions are
available in German (7), English (9), and French (12). If this parameter is not specified or if the
language is not available, German is used as the default language.

[Encoding (STRING)]: XML encoding for the result. 'UTF-16' (default) and 'UTF-8" are possible.
Return values: History (Base64): editing history in XML format:

Time

Zeitstempel

Action

Aktion z.B, "Objekt
angelegt’, 'Dokurnent
gedndert', 'Dakurnent
ausgageben’

~Description

Aushihdichere Beschreibung
DMSHistory E]—(—-——:EH Modification [ﬁ]_[‘“":E'_

—FUserHamEShurt |

kurzer Benutzemanns

Bearbeitungshistarie 1.@

Bearbeitungsvorgang

EUms:rH:amns:Full

wollstindiger Benutzernarne

StationlD

Stationskennung

Info

Kurzinfo zum
Anderungsworgang, 2.B.
"erzenden', 'Dakurnent zurn
Bearbeiten abgerufen’,
'‘Dokurnent geindeart’

Note: if the user was deleted at the same time, UserNameShort and UserNameFull will not be filled in.

DMS.GetShadowData
Description:

This job is used to read the index data of an object from the shadow table.
Parameter:
Flags (INT): Flags must be 0

Guid (String): GUID of the change progress from the history table & DMS.GetObjectHistory
[ObjectID (INT)]: ID of the object

[Encoding (STRING)]: XML encoding for the result. 'UTF-16' (default) and 'UTF-8" are possible.
Return values: ShadowData (Base64): Index data in DMSContent -HOL format

enaio® Page 101

enaio® server-api enaio®

DMS.GetObjectsByDigest

Description:

This job returns object information based on a hash value (fingerprint) of any file. It can be used to
determine if a file was already filed in the system. This job uses the 'std.FindDocumentDigest' job and
subsequently executes a validity check. The input parameter 'Digest’ is a fingerprint of the file which
can be determined with the SHA2-256 algorithm. Help functions are available in the respective client
libraries to determine the digest from a file without having to transfer the file to the server. (See
JDL:DigestUtil, CDL:CalcFileDigest)

Parameter:
Flags (INT): Flags must be 0
Digest (String): hash value of the file whose existence is to be checked. (SHA2-256Bit)

Return values:

TotalHits (INT): Number of hits
Objectlds (String): Comma-separated list of the object IDs of the found documents.
Typelds (String): Comma-separated list of object types.

DMS Reference

8 System fields
§ Date formats

System fields

The following system fields can be included in the XML search request:

Internal name Field Database field name
[@internal_name] number [@fieldname]
[@osguid]

OBJECT_ID 1100 id Text 10
OBJECT_COUNT 1101 anzahl Text 10
OBJECT_FLAGS 1102 flags Text 10
OBJECT_AVID 1103 archivist Text 255
OBJECT_AVDATE 1104 archived Date
OBJECT_CRID 1105 anleger Text 255
OBJECT_CRDATE 1106 created Date
OBJECT_TIME 1107 timestamp Timestamp | 10
OBJECT_MAIN 1108 main type Text 10
enaio® Page 102

enaio® server-api

enaio®

OBJECT_CO 1109 subtype Text 10
OBJECT_MEDDOCID 1110 medium_doc Text 10
OBJECT_MEDDIAID 1111 medium_dia Text 10
OBJECT_MEDDOCNA 1112 name_doc Text 24
OBJECT_MEDDIANA 1113 name_dia Text 24
OBJECT_LINKS 1114 left Text 10
OBJECT _VERID 1115 version Text 10
OBJECT_LOCKUSER 1116 lockuser Text 10
OBJECT_SYSTEMID 1117 systemid Text 10
OBJECT_MODIFYTIME 1118 modifytime Timestamp | 10
OBJECT_MODIFYUSER 1119 modifyuser Text 256
OBJECT_FOREIGNID 1124 foreignid Text 10
OBJECT_USERGUID 1125 osowner Text 32
OBJECT_DELETED 1126 deleted Text 10
OBJECT_INDEXHISTFLAGS 1127 indexhistflags Text 10
OBJECT_DOCHISTFLAGS 1128 dochistflags Text 10
OBJECT_OSSD 1129 ossd Text 32
OBJECT_MIMETYPEID 1900 mimetypeid Text 10
OBJECT_FILESIZE 1902 filesize Text 10
OBJECT_RETENTION_PLANNED | 1903 retention_planned | Date 10
OBJECT_RETENTION 1904 retention Date 10
STAMM_ID 1000 id Text 10
STAMM_TIME 1001 timestamp Timestamp | 10
STAMM _LINKS 1002 left Text 10
REG_ID 1120 id Text 10
REG_STAID 1121 stamm_id Text 10
REG_PARID 1122 parent_id Text 10
SDSTA_ID 1130 stamm_id Text 10
SDOBJ_ID 1131 object_id Text 10
SDOBIJTYPE 1132 objecttype Text 10
SDREG_ID 1133 register Text 10
SDDEL 1134 delete Text 10
enaio® Page 103

enaio® server-api

enaio®

SDTIME 1135 time stamp Text 10
SDREG_TYPE 1136 regtype Text 10
FOLDERID 1181 folderid Text 10
FOLDERTYPE 1182 foldertype Text 10
REGISTERID 1183 registerid Text 10
REGISTERTYPE 1184 registertype Text 10
PARENTREGID 1185 parentregid Text 10
PARENTREGTYPE 1186 parentregtype Text 10
MDDEL 1140 delete Text 5
MDTIME 1141 timestamp Timestamp | 10
MDMAP_ID 1142 mappe_id Text 10
MDSTA _ID 1143 stamm_id Text 10
MDOBJ_ID 1144 object_id Text 10
MDOBJTYPE 1145 objecttype Text 10
MDMOD 1146 modul Text 5
MDIN 1147 inbox Text 10
MDOUT 1148 ausgang Text 10
MDCOUNT 1149 count Text 5
Date formats

Formatting instructions are introduced with a percent sign (%). Character strings which do not start
with % will be copied to the result string without any changes. The following formatting instructions

can be used:

Formatting Description

%a abbreviated name of the week day

%A name of the week day

%Db abbreviated name of the month

%B name of the month

%cC Date and time according to the local settings
%d Day of the month, numeric (01-31)

%)j Day of the year, numeric (001-366)

%m Month, numeric (01-12)

%U Calendar week (with Sunday as the first day of the week) (00-53)
%W Week day, numeric (0-6; Sunday is 0)

%W Week day, numeric (0-6; Monday is 0)

%X Date according to the local settings

%X Time according to the local settings

%y Two-digit year (00-99)

enaio®

Page 104

enaio® server-api enaio®

%Y Four-digit year
%z, %Z (Abbreviated) name of the time zone; empty if time zone unknown
%% Percent sign

Security system
DMS.CheckPermission
DMS.CheckPermissions
DMS.CopySD
DMS.CreateSD
DMS.DeleteSD
DMS.ReadSD
DMS.SetSD

w wu W W W W W

Detailed Description

With enaio® version 4.50, you are provided with an additional security system at object level (SSOL)
besides the existing rights system. With this system a so-called Security Descriptor (SD) can be created
for every object, which refers to an Access Control List (ACL), i.e. a list of access control entries. Access
control entries allow to specify for users or a user group access authorizations needed to edit index data
or edit, delete and export objects.

Jobs for editing access structures in this security system are implemented in the DMS Executor. A job
also exists with DMS.CheckPermission that checks access rights to a specific object independently of
the used rights system.

List of Access Control Entries in XML format

XML is used to describe the list of access control entries. The jobs DMS.CreateSD, DMS.ReadSD, and
SMS.SetSD use the same XML schema, which can be called with the job DMS.GetXMLSchema.

Example:

List of access control entries in XML format (DMSAccess).

<DMSAccess timestamp=""" version="4_.50">

<ACL ossd=""" object_type="" object_id=""">

<UserACE modify_index="0" modify_object="0" delete_object="0"
export_object="0" osuid="""/>

<GroupACE modify_index="0" modify_object="0" delete_object="0"
export_object="0" osgid="""/>

</ACL>

</DMSAccess>

Explanation of the <DMSAccess> attributes:
§ timestamp: creation time of the Access Control List (format: YYYY/MM/DDTHH:MM:SS)

§ version: product version number

Explanation of the <ACL> attributes:
8 o0ssd (STRING): GUID of the Security Descriptor
§ obj_type (long): Object type

§ obj_id (long): ID of the object instance

enaio® Page 105

enaio® server-api enaio®

Explanation of the <UserACE> or <GroupACE> attributes:
§ osuid (STRING): GUID of the user
§ osgid (STRING): GUID of the user group
§ modify_index (long): access type write index data
§ 0=notset
§ 1=allowed
§ 2=notallowed
§ modify_object (long): access type edit object
§ 0=notset
§ 1=allowed
§ 2=notallowed
§ delete_object (long): access type delete object
§ 0=notset
§ 1=allowed
§ 2=notallowed
§ export_object (long): access type export object
§ 0=notset
§ 1=allowed

§ 2 =notallowed

Glossary

§ SSOL - Security System at Object Level

§ ACE - Access Control Entry: contains the allowed or denied access types for a user or a user group
8 ACL - Access Control List: list of all ACEs assigned to an object
8

SD - Security Descriptor: a security descriptor, which identifies an ACL, can be created for every
object. SSOL (see above) applies to objects with SD, the existing rights system applies to objects
without SD.

DMS.CheckPermission
Description:

With this job, access permissions for single DMS objects can be checked independently of the used
security system. To check whether it is allowed to insert an object at a specific location, the location has
to be defined with the FolderID or RegisterID parameter and set to ‘0" with the ObjectID and the access
type 'W' checked.

Parameter:

Flags (INT): not currently supported-> transfer 0

Access (STRING): access type to be checked (e.g. 'RWXDU' checks all access types)
§ R =read index data

§ W =write index data

enaio® Page 106

enaio® server-api enaio®

X = open/execute object

D = delete object

U = write object

ObjectType (INT): Object type
ObjectID (INT): ID of the object

w w W wWw

[RegisterType] (INT): type of parent register

§ 0=inno register (directly on the folder level)
§ -1=independent of registers

[RegisterID] (INT): ID of the parent register
[FolderID] (INT): ID of the folder

Return values:

Access (STRING): permitted access types (format corresponds the 'Access' input parameter)

DMS.CheckPermissions
Description:

With this job, access permissions can be checked for a list of DMS objects. As this job is aimed at
performance, no filing tray objects and no inactive variants are verified.

Parameter:

Flags (INT): not currently supported-> transfer 0

Access (STRING): access type to be checked (e.g. 'RWXDU' checks all access types)
R = read index data

W = write index data

X = open/execute object

D = delete object

w wu W W wWw

U = write object

ObjectType<n> (INT): Object type. <n> is a consecutive number beginning with 1.
ObjectList<n> (String): comma-separated list of the object 1Ds of the type ObjectType<n>
[RegisterType] (INT): type of parent register

§ 0 =inno register (directly on the folder level)

§ -1=independent of registers

[RegisterID] (INT): ID of the parent register

[FolderID] (INT): ID of the folder

Return values:

ObjectType<n> (INT): n-th object type

ObjectList<n> (String): comma-separated list of the IDs and the determined rights for the object type
n. The object ID is separated from the determined rights by a colon. See example below.

enaio® Page 107

enaio® server-api enaio®

Example:

Call:
Flags=0

Access =WRXDU
FolderID=380

FolderType=1

RegisterID=0

RegisterType=0
ObjectTypel=393216
ObjectList1=65493
ObjectType2=131072
ObjectList2=72272,72273,72274
Return:

ObjectTypel=131072
ObjectList1=72272:RWXUD,72273:RW---,72274:R-X--
ObjectType2=393216
ObjectList2=65493:RWXUD
Note:

The order of object types and of objects in an ID list does not have to correspond to the order in the
input parameters.

DMS.CopySD

Description:

This job assigns a copy of access control entries of an object to one or multiple other objects. When
copying, access rights are transferred to target objects only for those users and user groups for whom
no entry exists in the corresponding target object. On the other hand, existing access rights of users for
whom no entries exist in the source object will not be concerned.

Parameter:

Flags (INT): not currently supported-> transfer 0

ObjectID (INT): ID of the output object

ObjectType (INT): type of output object

Destination (STRING): list of target objects in XML format
Example:

Structure of the destination

<DMSAccess>

<ACL object_type="XXX1" object_id="YYY1"/>
<ACL object_type="XXX2" object_id="YYY2"/>
<ACL object_type="XXX3" object_id="YYY3"/>

enaio® Page 108

enaio® server-api enaio®

</DMSAccess>

Note:

Detailed description of the destination
8 object_type: Object type

8 object_id: ID of the object

DMS.CreateSD
Description:

This job creates a Security Descriptor for each object instance defined in the parameter "Xmlinfo.'

Parameter:

Flags (INT): not currently supported-> transfer 0

XmlInfo (STRING): list of objects in XML format for which security descriptors are to be created
Return values:

XmllInfo: (STRING): ACL list in XML format

Example:

Structure of the XmlInfo input parameter

<DMSAccess>
<ACL obj_type="1" obj_id="61967" />
<ACL obj_type="1" obj_i1d="61968" />
</DMSAccess>

Example:
returned ACL list in XML format (description)
see ACL-XML-Schema)

<DMSAccess timestamp='2004/04/08T12:59:25" version="4_50">
<ACL o0ssd=""6DBEC785D3CEB4D894B' obj_type="1" obj_id="61967" />
<ACL ossd=""2AB8AB82EOCEB4D8BDD' obj_type="1" obj_id="61968" />
</DMSAccess>

See also:
DMS.SetSD

DMS.DeleteSD
Description:

Use this job to delete the Access control entry of a user/group or the whole access control list for a
specified object.

Parameter:
Flags (INT): flags can have the following values

8 0-the object is specified with the 'ObjectType' and 'Objectld’ parameters The SD of the object and
thereby all ACEs for this object will be deleted.

§ 1 -—the security descriptor (and thus the object) is specified with the 'Ossd’ parameter. All ACEs
which belong to a user/user group marked by the 'Osuid' parameter will be deleted.

enaio® Page 109

enaio® server-api enaio®

§ 2 -—the object is specified with the 'ObjectType' and 'Objectld’ parameters All ACEs which belong to
a user/user group marked by the 'Osuid' parameter will be deleted.

8 ObjectType (INT): Object type

ObjectID (INT): ID of the object instance

Ossd (STRING): GUID of the security descriptor

Osuid (STRING): GUID of the user/user group whose access rights are to be deleted

DMS.ReadSD

Description:

This job returns the ACEs of a user/ user group or all users/user groups for a given object in XML
format.

Parameter:

Flags (INT): 0 = ACL of the object is returned; 1 = ACE for users/user groups is returned. (See
parameter ‘Osuid’)

Objectld (INT): ID of the object instance
ObjectType (INT): Object type

[Osuid] (STRING): users or groups GUID
Return values:

XmlInfo (BASE64): ACL in XML format
Example:

Structure of XmlInfo (description

see DMSAccess)

<DMSAccess>

<ACL ossd=""XXX1">

<UserACE osuid="YYY1l" modify_object="1" export_object="1"/>
<UserACE osuid="YYY2" modify_object="2" export_object="1"/>
<GroupACE osuid="YYY3" export_object="1"/>

</ACL>

</DMSAccess>

DMS.SetSD

Description:

This job creates one or multiple Access control entries.

Parameter:

Flags (INT): not currently supported-> transfer 0

XmllInfo (BASE64): Xml-formatted string containing the ACEs
Example:

Structure of XmlInfo (description

see DMSAccess)

<DMSAccess>
<ACL ossd=""XXX1'">

enaio® Page 110

enaio® server-api

enaio®

<UserACE osuid="YYY1l" modify_object="1" export_object="1"/>
</ACL>

<ACL ossd=""XXX2">

<UserACE osuid="YYY1l"™ modify_object="1" export_object="1"/>
<UserACE osuid="YYY2" modify_object="2" export_object="1"/>
</ACL>

<ACL ossd=""XXX3">

<GroupACE osuid="YYY3" export_object="1"/>

</ACL>

</DMSAccess>

Relations and Relation Texts
DMS.AddRel
DMS.AddRelText
DMS.AddRelTextLang
DMS.DelRel
DMS.DelRelText
DMS.ModRel
DMS.ModRelText
DMS.ModRelTextLang
DMS.RetrieveRelations
DMS.RetrieveRelTexts

w w W W W W W W W W

Detailed Description

Objects can be linked with relations from version 4.50. The relation between two objects is given a
predefined name (relation text) in this case. Each pair of these relations can be defined by object types.

Relations in XML format
Example:

<Relations>

<Relation obj_id1="1" obj_ typl="2" obj_id2="3" obj_typ2="4"
valid_from="3443234" valid_to="433444"

ensured=""1" checked="8"

reltextid=""AF32988234DEFA78979879""

10bj1d=""9" 10bjType="10" >

</Relation>

</Relations>

Comment:

The root element can be dropped, if only one entry has been defined.
Description of the attributes of the element 'RelationXML'

8 obj_id1 (LONG): ID of the 1st object

8 obj_typl (LONG): type of the 1st object

§ 0bj_id2 (LONG): ID of the 2nd object

§ obj_typ2 (LONG): type of the 2nd object

§ valid_from (LONG): time stamp for validity start date
§ valid_to (LONG): time stamp for validity end date

enaio® Page 111

enaio® server-api enaio®

ensured (LONG): Flag: 1=ensured, 0=not ensured

checked (LONG): Flag: 1=checked, 0=unchecked

created (LONG): creation timestamp

created_to (LONG): creation end timestamp (only relevant for search request)

modified (LONG): timestamp of the last modification

modified_to(LONG): end timestamp of the last modification (only relevant for search request)
deletetime (LONG): timestamp for the delete time

deletetime _to (LONG): end timestamp for the delete time (only relevant for search request)
deleteuser (STRING): name of the user who deleted the relation from the system

relid (STRING): GUID of the relation

reltextid (STRING): reference to the relation text (GUID)

iobjid (LONG): ID of the object forming the basis for the relation

w W W W W W W W W W W W W

iobjtype (LONG): type of the object forming the basis for the relation

Relation texts in XML format
Example:

<RelTexts>

<RelText shortrel="property"
active=""1"

objtypel="2"

objtype2="4"

to=""is property of"
reverse=""is property of"
langid="9"/>

</RelTexts>

Remarks:

The <RelTexts> root element can be dropped if only one <RelText> entry has been defined.
Explanation of the <RelText> attributes:

shortrel (STRING): short description of the relation text (max. 32 characters)

active (INT): activity status O=not active, 1=active

objtypel (INT): ID of the 1st object

objtype2 (INT): ID of the 2nd object

to (STRING):description of the relation between object type 1 and object type 2

reverse (STRING):description of the relation between object type 2 and object type 1

langid (INT): language ID (see Language code)

w W W W W W W

Language codes

DMS Executor supports jobs in multiple languages. The languages have to be configured before in the
enaio® system. "Windows Language Code ldentificators' are used as language codes, however, only the
main languages are supported. The following table contains the first 31 language codes (hexadecimal):

enaio® Page 112

enaio® server-api enaio®

0x01 | Arabic 0x11 | Japanese
0x02 | Bulgarian 0x12 | Korean
0x03 | Catalan 0x13 | Dutch
0x04 | Chinese 0x14 | Norwegian
0x05 | Czech 0x15 | Polish
0x06 | Danish 0x16 | Portuguese
0x07 | German 0x17 | Arabic
0x08 | Greek 0x18 | Romanian
0x09 | English 0x19 | Russian
0x0A | Spanish 0x1A | Croatian/Serbian
0x0B | Finnish 0x1B | Slovak
0x0C | French 0x1C | Albanian
0x0D | Hebrew 0x1D | Swedish
Ox0E | Hungarian Ox1E | Thai
OxOF | Icelandic Ox1F | Turkish
0x10 | Italian

DMS.AddRel

Description:

This job creates a relation between two objects.

Parameter:

Flags (INT): not currently supported-> transfer 0

RelationXML (BASE64): relation properties in XML format
Return values:

RellD (STRING): GUID that has been created as ID for this link
Example:

Structure of RelationXML (description:

see XMLRELATION)

<Relation obj_idl1="1" obj_ typl="2" obj_id2="3" obj_ typ2="4"
valid_from="3443234" valid_to="433444"

ensured=""1" checked=""0"

reltextid=""AF32988234DEFA78979879"

10bj 1d=""9" 10bjType="10" >

</Relation>

See also:
DMS.AddRelText, DMS.AddRelTextLang

enaio® Page 113

enaio® server-api enaio®

DMS.AddRelText

Description:

This job creates a relation text in a default language.

Parameter:

Flags (INT): not currently supported-> transfer 0

RelTextXML (BASE64): relation text and relation properties in XML format
Return:

RelTextID (STRING): GUID defined as ID for this relation entry

Example:

Structure of RelTextXML (description:

see XMLRELTEXT)

<RelText shortrel="property" active="1" objtypel="2" objtype2=""4"
to=""is properties of" reverse="is property of'>
</RelText>

DMS.AddRelTextLang
Description:

This job adds a relation text in a different language to an existing relation text entry.
Parameter:

Flags (INT): not currently supported-> transfer 0

RelTextXML (BASE64): relation text and relation properties in XML format
Return:

RelTextID (STRING): GUID defined as ID for this relation entry

Example:

Structure of RelTextXML (description:

see XMLRELTEXT)

<RelText reltextid="ABC79324DEF879342" langid="9" to="is owner"
reverse=""is owned by'>
</RelText>

See also:
DMS.AddRelText

DMS.DelRel
Description:

This job deletes the specified relation.

Parameter:

Flags (INT): not currently supported-> transfer 0
RellD (STRING): GUID of the relation to be deleted

enaio® Page 114

enaio® server-api enaio®

See also:
DMS.DelRelText

DMS.DelRelText
Description:

This job deletes a relation text. If they are still references to a relation text, an error will be created.
Parameter:

Flags (INT): not currently supported-> transfer 0

RelTextID (STRING): GUID of the relation text which to be deleted

LangID (INT): language code of the text to be deleted (see Language codes) (0 = relation text of all
languages will be deleted)

DMS.ModRel

Description:

This job changes the properties of relation entry. Following relation attributes can be changed:

reltextid
ensured
checked
valid_from
valid_to
iobjid
iobjtype

w W W W W W W

Parameter:

Flags (INT): not currently supported-> transfer 0

RelationXML (BASE64): Relations and the properties to be changed in XML format
Example:

Structure of RelationXML (description:

see XMLRELATION)

<DMSRelations>

<Relation relid="D2A0988234DEFA78979879" valid_from="'3443234"
valid_to="433444" ensured="1" checked="8"
reltextid=""AF32988234DEFA78979879" 10bjl1d=""9" 10bjType="10">
</Relation>

</DMSRelations>

DMS.ModRelText
Description:

This job changes the properties of one or multiple relation texts. If the text has to be changed in a
language other than the default language, the DMS.ModRelTextLang job has to be chosen.

Parameter:

enaio® Page 115

enaio® server-api enaio®

Flags (INT): not currently supported-> transfer 0
RelTextXML (BASE64): relation texts in XML format
Example:

Structure of RelTextXML (description:

see XMLRELTEXT)

<RelText reltextid="ABC79324DEF879342" shortrel="property" active="1"
objtypel="2" objtype2="4" to="is properties of" reverse="is

property of'>

</RelText>

DMS.ModRelTextLang
Description:

This job changes the relation text for a language specified in XML.
Parameter:

Flags (INT): not currently supported-> transfer 0

RelTextXML (BASE64): relation texts in XML format

Example:

Structure of RelTextXML (description:

see XMLRELTEXT)

<RelText reltextid="ABC79324DEF879342" langid="9" to="is owner"
reverse="is owned by">
</RelText>

DMS.RetrieveRelations
Description:

This job can be used to search for relations. The search criteria are defined with XML attributes. An
upper limited can be specified for the time attributes ‘created’, 'modified’ and 'deletetime’ with the
XML attributes ‘created_to', 'modified_to' and 'delete_to'. It is then searched in the particular time
period. Using '-1' means that no upper or lower limit will be used.

Parameter:

Flags (INT): not currently supported-> transfer 0

RelationXML (BASE64): search parameter in XML format

Created_to (INT): search parameter to limit the creation time

Modifytime_to (INT): search parameter to limit the time of the last modification
Deleted_to (INT): search parameter to limit the time of deletion

Direction (INT): flag which indicates whether the search is to be done in the reverse direction, if object
type 1 and/or object type 2 are indicated in the XML. 0 = unidirectional, 1=bidirectional search

Return:
RelationsXML (BASE64): all relations in XML format that fulfill the search criteria

Example:

enaio® Page 116

enaio® server-api enaio®

Structure of RelationXML (description:
see XMLRELATION)

<Relation obj_idl=""" obj typl=""' obj_i1d2=""" obj_typ2=""" valid_from="""
valid_to=""" ensured="" checked="" reltextid="" created="-1" created_to0="4322344"
10bj 1d=""

10bjType=""" >

</Relation>

Example:

Structure of RelationXML (description:
see XMLRELATION)

<Relations>

<Relation obj_id1=""" obj_typl=""" obj_id2=""" obj_typ2="""
valid_from="" valid_to="" ensured="" checked=""" reltextid="""
10bj1d=""" 10bjType=""" >

</Relation>

<Relation obj_id1=""" obj_typl=""" obj_id2=""" obj_typ2="""
valid_from="" valid_to=""" ensured=""" checked=""" reltextid="""

10bj Id=""" 10bjType=""" >
</Relation>
</Relations>

DMS.RetrieveRelTexts
Description:

This job returns all relation texts which correspond to the passed search criteria.

Parameter:

Flags (INT): not currently supported-> transfer 0

RelTextXML (BASE64): search criteria in XML format

Return values:

RelTextsXML (BASE64): list of all relation texts that correspond to the search criteria in XML format
Example:

Structure of RelTextXML (description:

see XMLRELTEXT)

<RelText shortrel="" active=""" to=""" reverse=""

langid="""/>

objtypel=""" objtype2="""

Example:
Structure of RelTextsXML (description:
see XMLRELTEXT)

<RelTexts>

<RelText reltextid=""88E28DCDA7414D0OB82AC2AFDOCB354EC""
shortrel="property" langid="7"

active="1" objtypel=""2" objtype2="4" to="is properties of"
reverse="1is property of''></RelText>

<RelText reltextid="79E28DCDA7414D0OB82AC2AFDASB354EC""
shortrel="document"” langid="7"

active="1" objtypel="5" objtype2="7" to="is document of"
reverse=""is document of"'></RelText>

enaio® Page 117

enaio® server-api enaio®

</RelTexts>

Portfolios

§ DMS.AddPortfolio
DMS.DelPortfolio
DMS.ModPortfolio
DMS.RemoveFromPortfolio
DMS.RetrievePortfolios

w w W wWw

Detailed Description
These jobs are used to search and edit portfolios.

Portfolio XML Format
Example:

<Portfolios>

<Portfolio i1d="123" created="135233432" creator="""
recipient="""" subject=""">

<Objects>

<Object objecttype_ i1d="13072" id="12">
</Object>

<Object>

</Object>

</Objects>

</Portfolio>

</Portfolios>

Description of elements and attributes

Element 'Portfolios": list of portfolios (the root element can be omitted if only one entry has been
defined.)

Attributes of the element 'Portfolio":

id (long): Portfolio ID

created (long): creation timestamp
creator (STRING): Name of creator
recipient (STRING): Receiver

subject (STRING): Title of the portfolio

w wu w W wWw

Element 'Objects": list of objects (folders, registers, documents) that the portfolio contains
Attributes of the element 'OBJECT":

8 objecttype_id (LONG): Object type

8 id (LONG): ID of the object instance

DMS.Addportfolio

Description:
This job creates a new portfolio.

Parameter:

enaio® Page 118

enaio® server-api enaio®

Flags (INT): not currently supported-> transfer 0
PortfolioXML (BASE64): description of the portfolio in XML format

Mode (INT): 0 (default) = searches for available portfolios using the recipient or subject. If one or
more portfolios are available, this or the first portfolio is used. 1=Creates a new portfolio.

Return values:

portfolio (INT): ID of the new portfolio (-1 = job failed)
Example:

Structure of portfolioXML (description:

see Portfolio XML Format)

<Portfolios>

<Portfolio created="" creator=""" recipient=""
subject=""">

</Portfolio>

</Portfolios>

DMS.Delportfolio
Description:

This job deletes a portfolio. The portfolio which has to be deleted can be identified by its ID, the
recipient (recipient ID) and the title (subject) of the portfolio.

Parameter:

Flags (INT): not currently supported-> transfer 0

PortfolioXML (BASE64): description of the portfolio in XML format
Example:

Structure of portfolioXML (description:

see Portfolio XML Format)

<Portfolio id="">
</Portfolio>

<l--or-->

<Portfolio recipient="" subject=""">
</Portfolio>

DMS.RemoveFromportfolio
Description:

This job deletes objects in the portfolio.

Parameter:

Flags (INT): not currently supported-> transfer 0

PortfolioXML (BASE64): description of the portfolio in XML format
Example:

Structure of portfolioXML (description:

see Portfolio XML Format)

enaio® Page 119

enaio® server-api enaio®

<Portfolio id="" created="" creator="" recipient=""
subject=""">

<Objects>

<Object objecttype_ id=""" id=""">

</Object>

</Objects>

</Portfolio>

DMS.Modportfolio
Description:

This job adds objects to an existing portfolio or deletes all objects of the portfolio.
Parameter:

Flags (INT): not currently supported-> transfer 0

Mode (INT): 1 = all objects of the portfolio will be deleted, otherwise 0.
PortfolioXML (BASE64): description of the portfolio in XML format

Example:

Structure of portfolioXML (description:

see Portfolio XML Format)

<Portfolio id="" created=""" creator="" recipient="""
subject=""">

<Objects>

<Object objecttype_id="" id=""">

</Object>

</Objects>

</Portfolio>

DMS.Retrieveportfolios
Description:

This job returns all portfolios which match the specified search criteria.
Parameter:

Flags (INT): not currently supported-> transfer 0

Created_to (Long): time stamp up to when the portfolio was created. O=unlimited
PortfolioXML (BASE64): search criteria for portfolio in XML format

GarbageMode (INT): (optional) 1=only objects from the trash can are taken into account. 0=objects
from the trash can are not taken into account.

Return values:

PortfoliosXML (BASEG4): list of all portfolios found in XML format
Example:

Structure of portfolioXML (description:

see Portfolio XML Format)

<Portfolio id="" created="" creator="" recipient=""
subject=""">
</Portfolio>

enaio® Page 120

enaio® server-api enaio®

User-Related data

§ DMS.DeleteUserData
DMS.GetUserData
DMS.GetUserDataNames
DMS.IsUserData
DMS.SetUserData

w W w w

Detailed Description

The jobs in this section are used to administer any user-related data. Each data entry is indicated by a
user defined name (maximum length 100), a type (see below) and a user ID. The user ID is determined
by the jobs automatically based on the user ID. The value of the entry is written into a BLOB field and
can therefore contain any content.

With the help of the type, the kind of data is defined. The table below (last update: 2004/03/18)
contains an overview of the numbers that have already been assigned.

Warning: the type cannot be selected. If a new type is required, it must be registered first of all.

Type Description

1 saved search request

2 External Programs

3 AS.INI

4 folder structure under ‘desktop’

5 Extended queries

6 data from current aslisten.dat

7 AS object in desktop area

8 entries for list fields

9 reserved

10 Import configuration dBase I11

12 Import configuration dBase 1V

13 Import configuration dBase V

13 Import configuration ASCII with separators
14 Import configuration ASCII fixed field length
15 reserved

16 reserved

17 Import configuration XML linear

18 Import configuration MS Access

19 Import configuration Excel 3

enaio® Page 121

enaio® server-api

20 Import configuration Excel 4
21 Import configuration Excel 5
22 Import configuration Excel 8
23 external import configuration
24 Import configuration ODBC

25-30 | reserved for import configurations

31 user/group export configurations

32 user/group import configurations

33 Automatically delete configuration from user trash cans
50 Client/Index scan configuration

51 Stamp templates for layers

52 Next position for public saved search requests

53 WF add-on favorites

54 Window gadget settings

80-85 | User-related configuration information for additional applications

DMS.DeleteUserData
Description:

This job deletes the user-related dataset which was specified by name and type.
Parameter:
Flags (INT): not currently supported-> transfer 0

Type (INT): see Data Types
Name (STING): identifier of the dataset

DMS.GetUserData
Description:

This job reads user related data for the specified name and type from the database.

Parameter:

Flags (INT): not currently supported-> transfer 0

Type (INT): see Data Types

Name (STRING): Name (STRING): identifier of the dataset
Return values:

IsUserData (INT): 1 = if the requested entry exists, otherwise 0
Value (BASE64): requested value

enaio® Page 122

enaio®

enaio® server-api enaio®

See also:
DMS.GetUserDataNames, DMS.SetUserData, DMS.DeleteUserData

DMS.GetUserDataNames
Description:

This job lists the names of all entries of the given type for the logged-in user .
Parameter:

Flags (INT): not currently supported-> transfer 0

Type (INT): see Data Types

Return values:

Name[1..n] (STRING): entry name

See also:

DMS.GetUserData

DMS.IsUserData
Description:

This job verifies whether an entry exists already for the indicated name and type. By default, the
existence is only verified for the user. If the check has to be carried out independently of the user —i.e.
for the type only — the corresponding flag has to be set.

Parameter:

Flags (INT): 1 = the existence of the entry is verified depending on the user, otherwise 0.
Type (INT): see Data Types

Name (STRING): Name (STRING): identifier of the dataset

Return values:

IsUserData (INT): 1 = if the requested entry exists, otherwise 0

DMS.SetUserData
Description:

This job saves user-related data in the database. If no entry for the specified name and type exists, a
new entry is created. The check to ascertain whether an entry already exists can be done using the job
DMS.IsUserData

Parameter:

Flags (INT): reserved, must be 0

Type (INT): see Data Types

Name (STRING): Name (STRING): identifier of the dataset
Value (BASE64): value to be saved

DMS.GetXMLSchema

Description:
enaio® Page 123

enaio® server-api enaio®

This job returns the specified XML schema as a file.
Parameter:

Flags (INT): must be 0

Schema (STRING): name of the schema

DMSData = Schema for the import

DMSQuery = schema for DMS search requests
DMSContent = Schema for DMS results
DMSAccess = Schema for SSOL jobs
DMSObjDef = Schema for the object definition
Relation = Schema for relations

RelText = Schema for relation texts

w W wWw W W W W W

portfolio = Schema for portfolios
Return values:

File list: name and path of the XSD file

enaio® Page 124

enaio® server-api ‘ enaio®

Medical Engine (Namespace med)

The medical engine provides access to medical information. The current task of the jobs is to
summarize and return laboratory values based on the LOINC system (see http://www.loinc.org/).

Please refer to the specification HL7 version 3 (see http://www.hl7.org/) for the jobs
SaveMedicalRecord, GetMedicalRecord, and NotifyMedicalRecord.

LoincResults

LoincObservations

LoincUnits
LoincViewSets
PatientData
CreateLaboratoryReport
UpdatePatientld

UpdateVisitld
Observationlnsert

ObservationRequestHistory

ObservationResultHistory

ObservationValues

SaveMedicalRecord
GetMedicalRecord
NotifyMedicalRecord

GetSystemOID

w W W W W W W W W W W W W W W W

Field Label

The individual field labels are organized in groups. These groups correspond to the tables of the
underlying database. If one or multiple field labels are indicated for the 'FieldSelectors' parameter in
the job, only these will be taken into account. If no field label is indicated, all values of the group will be
returned. Single field labels can be found in the result document at the same level as the XML result.

Observations Group

Master data of all examinations, e.g. laboratory results and vital signs or ECG, are summarized in this
group. Coding is done according to the LOINC standard! (leading Observation-1D->LoincID). In
ObservationResults it is referenced to observations (with LOINC-ID).

FieldSelector Description

ObsID LOINC-ID
ObsLastupdatedTS Time of the last modification in form of a time stamp.
ObsName Examiniation name

ObsStdValType_ID Default data format of the examination result (-> mdObsValueTypes)

enaio® Page 125

http://www.hl7.org/

enaio® server-api

enaio®

ObsStdUnit_ID

default unit of measurement (-> units)

ObsStdRefRange

Standard set of values (= set of values between OBS-STDMINVALUE and
OBS_STDMAXVALUE) based on the default unit of measurement (only
relevant for numeric value types obsOvtObjectID). Alternative names
from the LOINC default database (separated by ;).

ObsStdMinValue

Lower limit for the standard set of values based on the default unit of
measurement (only relevant for numeric value types obsOvtObjectID).

ObsStdMaxValue Upper limit for the standard set of values based on the default unit of
measurement (only relevant for numeric value types obsOvtObjectID).

ObsPosition Display position (esp. use in axvbPatCurve.dll). Consecutive numbering in
steps of 10.

ObsColor Display color as Hex-RGB value (esp. use in axvbPatCurve.dll).

ObsScsClass Classification of examinations according to the SCS system.

ObsLnComponent 1. Part of the Loinc name. Syntax: [analyte].[subclass].[sub-
subclass]”*[time delay] post [amount] [substance] [route]”adjustment.
Note:
LoincName=[LnComponent]:[LnProperty]:[LnTimeAspct]:[LnSystem]:[
LnScaleType]:[LnMethodType]

ObsLnProperty 2. Part of the Loinc name. Physical measurement category. Corresponds

with the LOINC table Properties.

ObsLnTimeAspct

3. Part of the Loinc name. Measurement scenario Syntax
[TimeAspect]~[Modifier] first part corresponds with the LOINC table
TimeAspects.

ObsLnSystem 4. Part of the Loinc name. Examination object Syntax
[System][Supersystem] if super system is not explicitly coded -> default
super system = patient

ObsLnScaleType 5. Part of the Loinc name. Scale type (continuous or discontinuous).
Corresponds with the ScaleTypes table

ObsLnMethodType 6. Part of the Loinc name. Measurement method Codes are self-
explanatory, otherwise refer to table 14 in LOINCManual.pdf

ObsLnRelatedNames | original alternative names from the LOINC standard database (separated
by ;)

ObsLnClass LOINC classification Corresponds with the Classes-Class Types LOINC
table.

ObsLnClassType Corresponds to LOINC table class types: 1 - Laboratory Class, 2 - Clinical
Class, 3 - Claims Attachments, 4 - Surveys

ObsIUPAC Alternative IUPAC coding

ObsMolarMass Molar mass (only relevant for determination of molecules)

enaio®

Page 126

enaio® server-api

Group Obsrequests

enaio®

Data of the laboratory search request is summarized in this group. Single queries are always
subordinate to a patient's stay. The results can be found in tdObservationResults. Results (e.g.
laboratory findings) transferred from sub systems by HL7 are to be inserted as valid. Possiblities to
change data depend on the status.

FieldSelector Description

ObrID unigue ObjectID in terms of a PrimaryKey (GUID)
ObrLastUpdatedT$S Timestamp of the last modification

ObrState currently invalid

ObrCreationDT Time of creation

ObrCreationUser User, who created

ObrReleaseDT Time of implementation

ObrCancelDT

Time of cancelation

ObrCancelUser

User who canceled

ObrCancelReason

Reason for cancelation

ObrCommonOrder_ID

Reference to the optionally related order (-> tdCommonOrders).
Warning: no enforcement of referential integrity for this relation!

ObrPlacerOrderID

Order number of the ordering party (only relevant in connection with
order/entry tdCommonQrders)

ObrFillerOrderID

Editing number of the service center and HL7 key field for identifying an
examination.

ObrObservationDT

Time of examination or time when samples were taken

ObrObsOrderSet_ID

Standard set LOINC ID (-> mdObsOrderSets) Represents one or multiple
examination(s). The latter is also called profile, set or collection process
(e.g. full blood count).

ObrArchiveDoclD

Reference to the diagnostic findings in the archive (ObjectID)

Group Obsresults

Examination results and diagnostic findings are summarized in this group. This object is subordinate
to an examination requirement/report which also contains the time of the examination. Warning:
options to change data depend on the state of the parent ObservationRequest!

FieldSelector Description

ObxID unigque ObjectID in terms of a PrimaryKey (GUID)
ObxLastUpdatedTS Timestamp of the last modification
ObxState Approval status -> moReleaseStateEnum

ObxObservation_ID

LOINC-ID of the examination (-> mdObservations)

ObxObservation_CE

Examination name as copied HL7-CodedElement: identifier* text*coding

enaio®

Page 127

enaio® server-api

enaio®

system”Alternate identifieralternate text/alternate coding system

ObxSubObs_ID

ObxValueType_ID

Data format of the Value field (-> mdObsvalueTypes)

ObxValue Result or measured value according to the format: obxOvtObjectID

ObxUnit_ID used unit of measurement (-> units)

ObxRefRange Reference area as text in the original HL7 format (refer to OBX 7)

ObxMinValue Lower limit for the standard set of values (only relevant for numeric value
types obxOvtObjectiD)

ObxMaxValue Upper limit for the standard set of values (only relevant for numeric value

types obxOvtObjectID)

ObxAbnormFlag_ID

Evaluation value in relation to the normal range. (-> mdObsAbnormalFlags).
Warning: Only the first transferred AbnormalFlag will be applied for an
ObsResult imported via HL7.

ObxResultState 1D

Findings result (-> mdObsResultStates)

ObxFootnotelD

User comment: Footnote ID (special use in axvbPatCurve.dll).

ObxFootnoteText User comment: footnote text (esp. use in axvbPatCurve.dll).
ObxComment User comment (esp. use in axvbPatCurve.dll).
ObxCreationDT Time of creation

ObxCreationUser

Creator

ObxReleaseDT

Time of implementation

ObxCancelDT

Time of cancelation

ObxCancelUser

User who canceled

ObxCancelReason

Reason for cancelation

Group Units

The measurement units used for quantification of the observations (tdObservationResults,
mdObservations) are summarized in this group. (->See also compilation in table
PropertiesAndUnits of the LOINC-MDB). Conversions can be found in the Conversions table. 'ID'

=HL7 name

FieldSelector Description

UntIiD ID compliant with HL7 2.4 specifications

UntLastupdatedTS | Timestamp of the last modification

UntName Lengthy name of the unit of measurement

UntAbbreviation common abbreviation of the unit as to be displayed to the user

enaio®

Page 128

enaio® server-api enaio®

Group ViewSets

The Viewsets group is a hierarchical depiction of the Viewsets and associated Views. All identifiers
which start with Ovws belong to the Viewset. Identifiers which start with Ovd are subordinate Views.
ViewSets: contains examination sets arranged for display in axvbpatCurve.dll. One set can represent
one or multiple examinations. The examinations linked with the set can be seen in
mmt_obsviewingsetdt. Views: contains 1..N individual examinations belonging to a display set
(mdObsViewingSets).

FieldSelector Description

OvsID unigque ObjectID in terms of a PrimaryKey (GUID)

OvsLastUpdatedTS Timestamp of the last modification

OvsName Name of the display set

OvdID unigque ObjectID in terms of a PrimaryKey (GUID)

OvdLastUpdatedTS | Timestamp of the last modification

OvdPosition Display position (1..N) of the examination

OvdObservationID Examination LOINC ID (-> mdObservations)

med.LoincResults
Description:

This job returns the values of the LOINC system for patients and their stay. The available filters are
described under the respective input parameters. All parameters are linked with a logical AND. If no
parameters are specified, the call will return all results.

Result sorting:
1. PatientlD

2. AccObjectID

3. VisitlD

4. ObservationDT

5. CreationDT

Parameter:

[Visits] (STRING): contains a comma-separated list of ID for the stays (see Namespace)
[FieldSelectors] (STRING): contains a comma-separated list of the requested fields; (see: field labels)

[Namespace] (STRING): indicates the system from which the values for patients and stays originate;
Empty = both parameters are expected

[ResultType] (STRING): indicates in which format the output parameters are provided (DEFAULT
BASEG64)

§ STRING = the result will be returned as string parameter
§ BASEG64 = the result will be returned Base64-encoded

[Patients] (STRING): not currently implemented (contains a comma-separated list of IDs for patients
(see Namespace)

enaio® Page 129

enaio® server-api enaio®

[From] (STRING): not currently implemented (if From is specified, only the results from (inclusive)
the specified time are returned. The ObservationDT of the request is taken into account. Format:
YYYY/MM/DD)

[To] (STRING): not currently implemented (if To is specified, only the results until the specified time
are returned. The ObservationDT of the query is taken into account. Please note that the indication of
the date automatically sets the corresponding time to 00:00. If a time has been set for the
corresponding data in the database, they will not be displayed as these data are then bigger than the
searched date. Format: YYYY/MM/DD)

[Status] (STRING): not currently implemented (contains a comma-separated list of the status. Only
LoincResults which have the indicated status will be returned. If 'fields' is not indicated, the
LoincResults with status 1 will be returned. Possible values: (at the moment only checked by database
results)

§ 0 -invalid dataset
§ 1 - current dataset
§ 2 -canceled dataset

[Extremes] (STRING): not currently implemented (min = returns the smallest value in each case for all
requested fields; max = returns the largest value in each case for all requested fields)

Return values:

Result (STRING): returns the result of the search request as XML document

Example:

The following example has been called as value with 'ObsID,ObrID,0bxI1D,0ObxValue,UntID".

<med>

<Patients>

<Patient ID="252" CabinetType="3">

<Visit ID="253">

<Requests>

<OBR ID="E3C1787E-69C2-11D6-82E2-0000D19D9210"">

<Results>

<OBX ID="E3C1787F-69C2-11D6-82E2-0000D19D9210" Value="'28.0"/>
<0OBX ID="E3C1789A-69C2-11D6-82E2-0000D19D9210" Value="neg"/>
<OBX ID=""E3C1789B-69C2-11D6-82E2-0000D19D9210" Value="‘massh." />
<OBX ID="E3C1789C-69C2-11D6-82E2-0000D19D9210" Value="neg"/>
<OBX 1D="E3C1789D-69C2-11D6-82E2-0000D19D9210" Value="neg"/>
<0OBX ID="E3C1789E-69C2-11D6-82E2-0000D19D9210" Value=""(+)"/>
<OBX ID="E3C1789F-69C2-11D6-82E2-0000D19D9210" Value=""Urate+"/>
<0OBX ID="E3C178A0-69C2-11D6-82E2-0000D19D9210" Value="neg"/>
</Results>

</0BR>

<OBR ID="E3C18537-69C2-11D6-82E2-0000D19D9210"">

<Results>

<OBX ID="E3C18538-69C2-11D6-82E2-0000D19D9210" Value="'25.0"/>
<0OBX ID="E3C18539-69C2-11D6-82E2-0000D19D9210" Value="neg"/>
<OBX ID="E3C1853A-69C2-11D6-82E2-0000D19D9210" Value="'6.60"/>
<OBX ID="E3C1853E-69C2-11D6-82E2-0000D19D9210" Value="''87.8"/>
<OBX ID="E3C1853F-69C2-11D6-82E2-0000D19D9210" Value="'30.5"/>
<OBX ID=""E3C18540-69C2-11D6-82E2-0000D19D9210" Value="237"/>
</Results>

</0BR>

<OBR ID=""8775BE70-68EA-11D6-82E2-0000D19D9210"">

<Results>

<OBX ID=""8775BE72-68EA-11D6-82E2-0000D19D9210" Value="142"/>
<OBX I1D=""8775BE73-68EA-11D6-82E2-0000D19D9210" Value="'4.15"/>

enaio® Page 130

enaio® server-api enaio®

<OBX ID=""8775BE74-68EA-11D6-82E2-0000D19D9210" Value="'2.36"/>
</Results>

</0BR>

<OBR I1D=""E3C19CDA-69C2-11D6-82E2-0000D19D9210"">

<Results>

<OBX ID=""E3C19CDB-69C2-11D6-82E2-0000D19D9210" Value="'0.900"/>
</Results>

</0BR>

</Requests>

</Visit>

</Patient>

</Patients>

<Observations>

<OBS 1D="4537-7"/>

<OBS 1D="'1988-5"/>

<OBS I1D="789-8"/>

<OBS ID="5787-7"/>

<OBS ID="5783-6"/>

<OBS ID="5769-5"/>

<OBS 1D="8246-1"/>

</0Observations>

<Units>

<Unit ID=""mg/dL"/>

<Unit ID="Mill/cmm"/>

<Unit ID="mm n.W."/>

<Unit ID="mmol/L"/>

<Unit ID=""mmol/I1"/>

<Unit 1D="pg"/>

<Unit I1D="U/1"/>

<Unit 1D="x1000/cmm"/>

</Units>

<ViewSets>

<ViewSet OvsID="615B8200-1635-4D89-B5EC-4977802D7719"
OvsLastUpdatedTS="1013087583" OvsName="'Set Cholangiolithiasis'>
<View OvdID="642345256923659265956346543656239562""
OvdLastUpdatedTS="1013087623" OvdPosition="130"
OvdObservationlD=""1988-5"/>

<View OvdID="385743657265762475643756783645726526""
OvdLastUpdatedTS=""1013087623" OvdPosition="160"
OvdObservationlD="2324-2"/>

<View OvdID="298436375638567834568734568734567834""
OvdLastUpdatedTS="1013087623" OvdPosition="180"
OvdObservationlD=""3040-3"/>

</ViewSet>

<ViewSet OvsID=""00CO0F47-176E-4A1E-B152-1D7C25865F71"
OvsLastUpdatedTS="1013087583" OvsName="'Set heart attack>
<View OvdID="A795DBFE-4440-4248-A358-29D57DB02E90""
OvdLastUpdatedTS="1013087623" OvdPosition="10"
OvdObservationlD=""1920-8"/>

<View OvdID="A8D5D3A1-4EB3-492C-9CAB-E7908D217784""
OvdLastUpdatedTS="1013087623" OvdPosition="20"
OvdObservationlD="1677-4"/>

<View OvdID="345346536536534625762357632756327465""
OvdLastUpdatedTS="1013087623" OvdPosition="60"
OvdObservationlD="6598-7"/>

<View OvdID="094632784523856827345823568235872385""
OvdLastUpdatedTS=""1013087623" OvdPosition="170"
OvdObservationlD="1798-8"/>

</ViewSet>

</ViewSets>

</med>

enaio® Page 131

enaio® server-api enaio®

med.LoincObservations
Description:

This job returns the master data of the observations of the LOINC system. The available filters are
described under the respective input parameters. All parameters are linked with a logical AND. If no
parameters are specified the call returns all observations.

Parameter:
[Visits] (STRING): comma-separated list of IDs for the visits (see Namespace)

[Namespace] (STRING): indicates the system from which the values for patients and stays originate;
Empty = both parameters are expected

[ObsIDs] (STRING): contains a comma-separated list of the requested observations
[FieldSelectors] (STRING): contains a comma-separated list of the requested fields; see: field labels

[ResultType] (STRING): indicates in which format the output parameters are provided (DEFAULT
BASE64)

§ STRING = the result will be returned as string parameter
§ BASEG64 = the result will be returned Base64-encoded

[Patients] (STRING): not currently implemented (contains a comma-separated list of IDs for patients
(see Namespace)

[ViewSets] (STRING): not currently implemented (if ShowsSets is specified, the set for each
observation are output in which the relevant observation is located (default value: false))

Return values:

Result (STRING): returns the result of the search request as XML document

med.LoincUnits
Description:

This job returns the master data of the units of the LOINC system. The available filters are described
under the respective input parameters. All parameters are linked with a logical AND. If no parameters
are specified, the call will return all units.

Parameter:
[Visits] (STRING): comma-separated list of IDs for the visits (see Namespace)

[Namespace] (STRING): indicates the system from which the values for patients and stays originate;
Empty = both parameters are expected

[UnitIDs] (STRING): contains a comma-separated list of ID for the units
[FieldSelectors] (STRING): contains a comma-separated list of the requested fields; see Field labels

[ResultType] (STRING): indicates in which format the output parameters are provided (DEFAULT
BASE6G4)

§ STRING = the result will be returned as string parameter
§ BASEG64 = the result will be returned Base64-encoded

[Patients] (STRING): not currently implemented (contains a comma-separated list of IDs for patients
(see Namespace)

enaio® Page 132

enaio® server-api enaio®

Return values:

Result (STRING): returns the result of the search request as XML document

med.LoincViewSets

Description:

This job returns the master data of the ViewSets of the LOINC system.
Parameter:

[ResultType] (STRING): indicates in which format the output parameters are provided (DEFAULT
BASE64)

8 STRING = the result will be returned as string parameter
§ BASE64 = the result will be returned Base64-encoded
Return values:

Result (STRING): returns the result of the search request as XML document

med.PatientData
Description:

This job returns data of one or more patients in a specified form, independent of the archive structure.
So the caller has the possibility to access patient data without knowing the archive's internal structure.

The job uses data which can be found at different locations depending on the archive structure. To
guarantee that the same result structure is returned every time, an external query (query_patients.xml)
and an external style sheet (query_patients.xsl) will be used. These two files can be found in the server
directory etc/med and have to be adapted to the archive's corresponding structure.

The search request is a DMS executor search into which the passed job parameters will be included by
the PatientData job. The DMS executor only takes those areas into account for which param tags have
been created in the DMS search request. The following DMS search param tags will be inserted:

§ PatientlD - the value set in PatientID will be inserted

§ Surname — the value set in Surname Parameter will be inserted

§ Firstname — the value set in Firstname Parameter will be inserted

§ Visit —a tag will be inserted for every value of the list passed to Firstname Parameter
Parameter:

[PatientID] (STRING): contains the patient ID of the requested data, use of wildcards is possible for
this parameter (the patient ID is a customer-specific value and has nothing to do with the internal IDs
of the archive/Loinc system.)

[Surname] (STRING): contains the surname of the requested patient, use of wildcards is possible for
this parameter

[Firstname] (STRING): contains the surname of the requested patient, use of wildcards is possible for
this parameter

[Visits] (STRING): contains a comma-separated list of ID for the visits (see Namespace), the use of
wildcards is possible for this parameter

[Namespace] (STRING): indicates the system from which the values for visits originate; Empty = both
parameters are expected

enaio® Page 133

enaio® server-api enaio®
[ResultType] (STRING): indicates in which format the output parameters are provided (DEFAULT
BASE64)

§ STRING = the result will be returned as string parameter

§ BASEG64 = the result will be returned Base64-encoded

Return values:

Result (STRING): returns the result of the search request as XML document

“,
RS
Y

wverwandets

Diese Dateien sind
Archiv-spezifisch
anzupassen

Iy PatientData

aufrufen

Aufrufer

guery _patients.xml
Internal structure of the job:

The following examples demonstrate the structure of filed XSL documents and the accordingly created
XML documents.

Filed DMS search (query_patients.xml):

<?xml version="1_.0" encoding="1S0-8859-1""?>
<DMSQuery>

<Params/>

<Archive name="PATIENT">
<ObjectType name="‘Patient'>
<Fields>

<Field name="Patient ID"/>

<Field name="Name'/>

<Field name="First name'/>
</Fields>

<Conditions>

<ConditionObject name="patient'>
<FieldCondition name="first name'>
<ParamValue ref="Firstname'/>
</FieldCondition>

<FieldCondition name="Name'>
<ParamValue ref="'Surname'/>
</FieldCondition>

<FieldCondition name="Patient ID">
<ParamValue ref="PatientlID"/>
</FieldCondition>
</ConditionObject>
<ConditionObject name="Visit">
<FieldCondition name="Case ID">

enaio® Page 134

enaio® server-api enaio®

<ParamValue ref="Visit"/>
</FieldCondition>
</ConditionObject>
</Conditions>

<ChildObjects child_schema="def" export_depth="5">
<SubObjectType name="Visit''>
<Fields>

<Field name="Case ID"/>

<Field name="Admission date"/>
</Fields>

</SubObjectType>

<SubObjectType name="Movement''>
<Fields fields_shema="ALL"/>
</SubObjectType>
</ChildObjects>

</ObjectType>

</Archive>

</DMSQuery>

DMS query with inserted parameters for transfer to the DMS executor:

<?xml version="1_.0" encoding="1S0-8859-1""?>
<DMSQuery>

<Params>

<Param name="Surname''>Meier</Param>
<Param name="Firstname">Er*</Param>
<Param name="Visit'>28*</Param>
</Params>

<Archive name=""PATIENT'>
<ObjectType name="Patient'>
<Fields>

<Field name="Patient ID"/>

<Field name="Name'' />

<Field name="First name"/>
</Fields>

<Conditions>

<ConditionObject name="patient'>
<FieldCondition name="Ffirst name'>
<ParamValue ref="Firstname"/>
</FieldCondition>

<FieldCondition name="'Name"'>
<ParamValue ref="Surname"/>
</FieldCondition>

<FieldCondition name="Patient ID">
<ParamvValue ref=""PatientID"/>
</FieldCondition>
</ConditionObject>
<ConditionObject name="Visit">
<FieldCondition name="Case ID">
<ParamValue ref="Visit'"/>
</FieldCondition>
</ConditionObject>

</Conditions>

<ChildObjects child_schema=""def" export_depth="5">
<SubObjectType name="Visit'>
<Fields>

<Field name="Case ID"/>

<Field name="Admission date'/>
</Fields>

</SubObjectType>

<SubObjectType name=""Movement''>
<Fields fields_shema="ALL"/>
</SubObjectType>

</ChildObjects>

enaio® Page 135

enaio® server-api enaio®

</ObjectType>
</Archive>
</DMSQuery>

Filed style sheet (query_patients.xsl):

<?xml version="1.0" encoding="UTF-8"7?>

<xsl:stylesheet version="1.0"
xmIns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmIns:fo=""http://www.w3.0rg/1999/XSL/Format'>
<xsl:output method="xml"/>

<xsl:template match="/">

<xsl:element name="PatientData'>

<xsl:apply-templates
select="DMSContent/Archive/ObjectType[@name="PATIENT"]/ObjectList"
mode="'Patient"/>

</xsl:element>

</xsl:template>

<l_—

Output patient data

-——>

<xsl:template match="Object"™ mode="Patient">
<xsl:element name="Patient'>

<xsl:attribute name="0SID">

<xsl:value-of select="Qid"/>

</xsl:attribute>

<xsl:attribute name="Surname">

<xsl:value-of select="Fields/Field[@name="Name"]"/>
</xsl:attribute>

<xsl:attribute name="Firstname'>

<xsl:value-of select="Fields/Field[@name="Vorname®]"/>
</xsl:attribute>

<xsl:attribute name="PatientlID">

<xsl:value-of select="Fields/Field[@name="patient ID"]"/>
</xsl:attribute>

<xsl:apply-templates
select=""ChildObjects/ObjectType[@name="visit"]/ObjectList"
mode="Visit'/>

</xsl:element>

</xsl:template>

<I--

Output visits

——

<xsl:template match="Object" mode="Visit'>
<xsl:element name="Visit">

<xsl:attribute name="0SID">

<xsl:value-of select=""@id"/>

</xsl:attribute>

<xsl:attribute name="Case ID">

<xsl:value-of select="Fields/Field[@name="Case ID"]"'/>
</xsl:attribute>

<xsl:attribute name="Admission date'>

<xsl:value-of select="Fields/Field[@name="admission date"]'/>
</xsl:attribute>

<xsl:apply-templates
select="ChildObjects/ObjectType[@name="Movement"]/ObjectList"
mode="*"Movement"/>

</xsl:element>

</xsl:template>

<l

Output movements

-——>

<xsl:template match="Object" mode=""Movement'>

enaio® Page 136

enaio® server-api enaio®

<xsl:element name=""Movement'>

<xsl:attribute name="0SID">

<xsl:value-of select=""@id"/>

</xsl:attribute>

<xsl:attribute name="Time">

<xsl:value-of select="Fields/Field[@name="Time"]"/>
</xsl:attribute>

<xsl:attribute name=""Movement type''>

<xsl:value-of select="Fields/Field[@name="Movement type"]"/>
</xsl:attribute>

<xsl:attribute name="Patient status'>

<xsl:value-of select="Fields/Field[@name="Patient status"]'/>
</xsl:attribute>

<xsl:attribute name="KSt'>

<xsl:value-of select="Fields/Field[@name="KSt"]"/>
</xsl:attribute>

<xsl:attribute name="Department>

<xsl:value-of select="Fields/Field[@name="Department™]"/>
</xsl:attribute>

<xsl:attribute name="Internal movement ID">

<xsl:value-of select="Fields/Field[@name="Internal movement I1D"]"/>
</xsl:attribute>

<xsl:attribute name="External movement 1D">

<xsl:value-of select="Fields/Field[@name="External movement ID"]"/>
</xsl:attribute>

<xsl:attribute name="Origin">

<xsl:value-of select="Fields/Field[@name="0rigin®]"/>
</xsl:attribute>

<xsl:attribute name="'Canceled">

<xsl:value-of select="Fields/Field[@name="Canceled"]"/>
</xsl:attribute>

</xsl:element>

</xsl:template>

</xsl:stylesheet>

Created result:

<?xml version="1.0" encoding="UTF-16"?>

<PatientData>

<Patient OSID="575" Surname="Meier' Firstname="Erwin" PatientlD="188123">
<Stay OSID="576" Case ID="287084" Admission date="26.08.2003">

<Movement OSID="577" Time='"20030826101449" Movement type="""

Patient status="I1" KSt="" Department="" Internal movement ID="""
External movement ID="" Origin=""" Canceled=""" />

</Visit>

</Patient>

</PatientData>

med.CreatelLaboratoryReport
Description:

This job creates a laboratory report with the existing data for a stay. The laboratory report is created as
PDF document and filed as document related to a stay. If this job is used, the following document type
has to exist in the object definition:

enaio® Page 137

enaio® server-api enaio®

O x|

) Laborbericht |

erstellt am; I
erstellt um;
erstellt vor:

& speichem | Abbrechen

Parameter:

[Visits] (STRING): the object ID of the visit in which the laboratory report is to be created
Return values:

[ObjectID] (INTEGER): object ID of the laboratory report added to the visit

Internal structure of the job:

The med.Observation job returns laboratory data for the stay, the med.PatientData job returns patient
data. An XSL transformation will be carried out afterwards. The corresponding style sheet
labreport.xslt is in the directory ./etc/med. The result of this transformation is an XSL:FO file. This file
is converted into a PDF document via the job cnv.ConvertDocument. Afterwards, the PDF document
will be added to the stay with the dms.XMLInsert job.

med.UpdatePatientld
Description:

The job resets the patient ID for all entries in the laboratory system with the passed patient ID.
Parameter:

[OldPatientID] (STRING): object ID of the patient to be replaced by the new object ID
[NewPatientID] (STRING): new object ID of the patient to replace the old object ID
[VisitID] (STRING): obiject ID of the visit.

If this ID is indicated, only those PatientIDs of the data will be changed which also contain the
respective StaylD.

Return values:

med.UpdateVisitld
Description:

The job replaces the object ID of the stay for all entries in the laboratory system with the passed object
ID of the stay.

Parameter:
[OldVisitID] (STRING): object ID of the visit to be replaced by the new object ID of the visit
[NewVisitID] (STRING): new object ID of the visit to replace the old object ID

Return values:

med.Observationlnsert
Description:

enaio® Page 138

enaio® server-api enaio®

Adds new laboratory values to the system. With this job, it is possible to add Loinc values for patients
to the laboratory system in with secure transactions. Date and time values which have been passed
empty will be saved as NULL in the database.

Parameter:

[Input] (BASE64): contains the data to be added in an XML structure
The following XML codings are supported:

UTF-8 (with and without BOM)

if no BOM is present for UTF-8, it will be checked whether the encoding UTF-8 exists in the XML data
At the moment, this is only done by string comparison!

i50-8859-1 The XML data are searched for the encoding iso-8859-1. If it is found, the data will be
interpreted as ASCII. At the moment, this is only done by string comparison!

UFT-16-little endian (with and without BOM)
Identification is performed in the following order:
UTF-16 BOM check

UTF-8 BOM check

XML data are checked for UTF-8 encoding

XML data are checked for 1ISO-8859-1 encoding
all other XML data are interpreted as UTF-16

The check of the respective encoding is done context-insensitively. Formats which are not supported
are interpreted as UTF 16.

[Encoding] (STRING): specifies the encoding format for the return XML. If this parameter is not
indicated or if it is not listed below, UTF-16 will be returned. If the parameter ResultType is called with
the value String, the parameter will be ignored and the result will be returned with UTF-16 encoding.

The parameter value is context-insensitive — the following parameter value will be supported:
UTF-8 - the data will be returned UTF-8 encoded.
ASCIl - the data will be returned ASCII encoded (1ISO-8859-1).

If the parameter ResultType is called with the value String, the parameter will be ignored and the result
will be returned as String and not as Base64-encoded parameter. This parameter is to be used for test
purposes only. If this parameter is not indicated, the data will be returned Base64-encoded.

The parameter value is context-insensitive — the following parameters will be supported:

STRING - If this value is given, the result will be returned in the output parameter
<Result> in the String format.

BASE64- If this value is given, the result will be returned Base64-encoded.
Return values:

[Result] (BASE64/STRING): returns the XML enriched with the fields additionally created by the
job. It additionally contains the created IDs, status information and UpdateCounts.

med.ObservationResultHistory
Description:

enaio® Page 139

enaio® server-api enaio®

Job to determine the history of a result (OBX)

This job can be used to track the update history of single results.

All determined results will be returned under the current response (OBR).
They are sorted in the following order:

Patient ID (obr_PatObjectID)

Visit ID (obr_VisObjectID)

Request ID (obr_ID)

Result status (obx_State)

Result update count (reverse) (obx_UpdateCount DESC)

Parameter:

[Resultlds] (STRING): IDs of the results (OBX) for which the update history is to be displayed. The
individual results are to be displayed comma-separated. These 1Ds are IDs which are returned by the
med.ObservationValues. They are no LOINC-IDs.

[ShowTestValues] (STRING): specifies whether the values marked as test are to be returned or those
not marked as test. If this parameter is not indicated, the data which have not been marked will be
returned. In order to be taken into account, the values of the search as well as the values of the results
must have the same settings. If this parameter is not indicated, the data which have not been marked
for test purposes will be returned.

The parameter value is context-insensitive — the following parameter value will be supported:
true the values marked for test purposes will be returned
false the values not marked for test purposes will be returned

[Encoding] (STRING): specifies the encoding format for the return XML. If this parameter is not
indicated or if it is not listed below, UTF-16 will be returned. If the parameter ResultType is called with
the value String, the parameter will be ignored and the result will be returned with UTF-16 encoding.

The parameter value is context-insensitive — the following parameter value will be supported:
UTF-8 - the data will be returned UTF-8 encoded.
ASCII - the data will be returned ASCII encoded (1SO-8859-1).

If the parameter ResultType is called with the value String, the parameter will be ignored and the result
will be returned as String and not as Base64-encoded parameter. This parameter is to be used for test
purposes only. If this parameter is not indicated, the data will be returned Base64-encoded.

The parameter value is context-insensitive — the following parameters will be supported:

STRING - If this value is given, the result will be returned in the output parameter
<Result> in the String format.

BASE64- If this value is given, the result will be returned Base64-encoded.
Return values:
[Result] (BASE64/STRING): returns the history of the requested results.

med.ObservationRequestHistory
Description:

enaio® Page 140

enaio® server-api enaio®
Job for determining the history of a search. This job can be used to track the update history of single
requests (OBRs).

Parameter:

[Resultlds] (STRING): 1Ds of the OBRs for which the update history is to be displayed. The individual
OBRs are to be displayed comma-separated. It is only possible to track current OBRs. No IDs will be
returned for old (already updated) OBRs. Current OBRs can be determined with med.LoincValues and
the indication of the relevant stay.

[ShowTestValues] (STRING): specifies whether the values marked as test are to be returned or those
not marked as test. If this parameter is not indicated, the data which have not been marked will be
returned. In order to be taken into account, the values of the search as well as the values of the results
must have the same settings. If this parameter is not indicated, the data which have not been marked
for test purposes will be returned.

The parameter value is context-insensitive — the following parameter value will be supported:
true the values marked for test purposes will be returned
false the values not marked for test purposes will be returned

[Encoding] (STRING): specifies the encoding format for the return XML. If this parameter is not
indicated or if it is not listed below, UTF-16 will be returned. If the parameter ResultType is called with
the value String, the parameter will be ignored and the result will be returned with UTF-16 encoding.

The parameter value is context-insensitive — the following parameter value will be supported:
UTF-8 - the data will be returned UTF-8 encoded.
ASCII - the data will be returned ASCII encoded (ISO-8859-1).

If the parameter ResultType is called with the value String, the parameter will be ignored and the result
will be returned as String and not as Base64-encoded parameter. This parameter is to be used for test
purposes only. If this parameter is not indicated, the data will be returned Base64-encoded.

The parameter value is context-insensitive — the following parameters will be supported:

STRING - If this value is given, the result will be returned in the output parameter
<Result> in the String format.

BASE64- If this value is given, the result will be returned Base64-encoded.
Return values:
[Result] (BASE64/STRING): returns the history of the requested OBR:s.

med.ObservationValues
Description:
Returns the values of the laboratory system. Values from the laboratory system can be determined with

this job. The corresponding master data will be additionally returned. Unit master data will be
returned according to the result. Viewsets will always be returned complete.

Parameter:

[Patients] (STRING): obiject IDs of the patients for which the values are to be determined. If data
have to be determined for several patients, comma-separated IDs have to be passed. If an empty
parameter is passed, an error will be returned. If this parameter is not indicated, no patients will be
selected.

enaio® Page 141

enaio® server-api enaio®

[Visits] (STRING): object IDs of the visits for which the values are to be determined. If data have
to be determined for several stays, comma-separated IDs have to be passed. If an empty parameter is
passed, an error will be returned. If this parameter is not indicated, no stays will be selected.

[State] (STRING): limits the query by status
The parameter value is context-insensitive — the following parameters will be supported:

ALL - Current as well as updated values will be output. This corresponds to specification
<1.2> but performs better.

1 Only the current values will be output. This is like calling the job without the parameter State.
With the value 2, no final result will returned as the relations are changed during an update!

[ShowTestValues] (STRING): specifies whether the values marked as test are to be returned or those
not marked as test. If this parameter is not indicated, the data which have not been marked will be
returned. In order to be taken into account, the values of the search as well as the values of the results
must have the same settings. If this parameter is not indicated, the data which have not been marked
for test purposes will be returned.

The parameter value is context-insensitive — the following parameter value will be supported:
true the values marked for test purposes will be returned

false the values not marked for test purposes will be returned

[Optimize] (STRING): enables optimization of the request or return of the result.

The parameter value is context-insensitive — the following parameter value will be supported:
NoEmptyFields

if this value is given, all fields containing an empty string will be suppressed in the output. This leads to
smaller sizes for output documents and reduced network load. If this parameter is not indicated, the
corresponding fields will be returned with an empty string.

[Encoding] (STRING): specifies the encoding format for the return XML. If this parameter is not
indicated or if it is not listed below, UTF-16 will be returned. If the parameter ResultType is called with
the value String, the parameter will be ignored and the result will be returned with UTF-16 encoding.

The parameter value is context-insensitive — the following parameter value will be supported:
UTF-8 - the data will be returned UTF-8 encoded.
ASCIIl - the data will be returned ASCII encoded (1ISO-8859-1).

If the parameter ResultType is called with the value String, the parameter will be ignored and the result
will be returned as String and not as Base64-encoded parameter. This parameter is to be used for test
purposes only. If this parameter is not indicated, the data will be returned Base64-encoded.

The parameter value is context-insensitive — the following parameters will be supported:

STRING - If this value is given, the result will be returned in the output parameter
<Result> in the String format.

BASE64- If this value is given, the result will be returned Base64-encoded.
Return values:

[Result] (BASE64/STRING): returns the requested laboratory values as an XML document

enaio® Page 142

enaio® server-api enaio®

med.SaveMedicalRecord
Description:

With this job, medical documents can be saved in the archive. It is provided by Optimal Systems
GmbH.

Documents can only be saved when the status code of the medical record has the values 'new’, 'active'
or 'completed’. With the status codes 'obsolete’ or ‘canceled’, the job will return an exception. The
caller will be given an error message which can be programmatically received.

The storage code for documents which will be saved or queried has to meet the consistency
requirements for medical records according to the HL VV2.x Specification (Chapter 9, Medical
Records/Information Management (Document Management)).

Attachments and documents which do not comply with the CDA standard have to be provided in a file
list. The first document of the list is the Medical Record Document and the other documents are
attachments which have to be saved in the system together with the Medical Record. The references to
the attachments can be used with the MedicalRecordAttachments parameter.

The MedicalRecord.id.root or MedicalRecord.id.extension parameters are optional. If they are not
indicated, the system will generate these I1Ds.

Parameter:
If no ClincialDocument parameter is passed
[Patientnumber] (STRING): patient number of the patient whose medical record is requested.

[Visitnumber] (STRING): case number of the patient's visit for which the medical record is
requested.

[MedicalRecordContainer] (STRING): the document in the archive that is to be used for saving the
medical record.

[MedicalRecordAttachmentsContainer] (STRING): the document in the archive that is to be used
for saving medical record attachments.

[MedicalRecord.statusCode] (STRING): status code of the medical record. Available values are:
new

active

completed

obsolete

canceled

[MedicalRecord.completionCode] (STRING): completion code of the medical record. Available
values are:

AU - authenticated
DI - dictated

DO - documented
IP - in progress

IN - incomplete

LA - legally authenticated

enaio® Page 143

enaio® server-api enaio®

PA pre-authenticated

[MedicalRecord.availibilityTime] (STRING): availability time of the document. This value is
returned as HL7 time stamp.

[MedicalRecord.storageCode] (STRING): storage code of the medical record. Available values
are:
AC - active

AA - active and archived

AR - archived (not active)

PU - purged

Either

[ClinicalDocument] (BASE64): CDA document to be saved as a medical record.
Or

[MedicalRecord.id.root] (STRING): ROOT ID of the medical record.

[MedicalRecord.id.extension] (STRING): extension ID of the medical records.

Optional

If nothing is indicated, it is assumed that no relations exist to a parent object.
[MedicalRecord.relatedDocument.parentDocument . id.root] (STRING): root ID of the related
document.

[MedicalRecord.relatedDocument.parentDocument . id.extension] (STRING): extension ID of the
related document.

[MedicalRecord.relatedDocument.typeCode] (STRING): relation to the parent object.
Available values are:

RPLC — will replace the related document A new main variant is created.

XFRM - the returned document is a transformation of the related document. E.g. a digitally signed
version. A new subvariant iwill be created.

APND - the returned document is an attachment/additional document to the related document. A
new main variant 1.0 will be created.

Return values:

[ObjectID] (STRING): object ID under which the document was saved in the archive. This ID is
created by the system and cannot be created by the caller.

[MedicalRecord.id.root] (STRING): root of the ID of the document to be requested.
[MedicalRecord.id.extension] (STRING): extension of the ID of the document to be requested.
[MedicalRecord.statusCode] (STRING): status code of the medical record. Available values are:
new

active

completed

obsolete

canceled

enaio® Page 144

enaio® server-api enaio®
[MedicalRecord.completionCode] (STRING): completion code of the medical record. Available
values are:

AU authenticated

DI dictated

DO documented

IP in progress

IN incomplete

LA legally authenticated

PA pre-authenticated

[MedicalRecord.availibilityTime] (STRING): availability time of the document. This value is
returned as HL7 time stamp.

[MedicalRecord.storageCode] (STRING): storage code of the medical record. Available values
are:

AC active
AA active and archived
AR archived (not active)

PU purged

med.GetMedicalRecord
Description:

A medical record which was saved in the archive with the med.SaveMedicalRecord job can be queried
with this job.

Two different modes can be used for queries.

Combination of the OID (equals root ID) and the instance ID (equals extension ID).

Object ID from the archive

Afterwards additonal parameters will be listed which can be/have to be indicated when a job is called.

Documents can only be returned when the status code of the medical record has the values ‘new',
‘active' or ‘completed'. With the statuses ‘obsolete’ or 'cancelled’, the caller will only be provided the
Status code of the medical record.

The storage code for documents which will be saved or queried has to meet the consistency
requirements for medical records according to the HL V2.x Specification (Chapter 9, Medical
Records/Information Management (Document Management)).

The documents will be provided in a file list. The first document of the list is the Medical Record
Document, other documents are attachments which were saved in the system together with the
Medical Record. References to the attachments can be used with the MedicalRecordAttachments
output parameter.

Parameter:

[Patientnumber] (STRING): patient number of the patient whose medical record is requested.

enaio® Page 145

enaio® server-api enaio®
[Visitnumber] (STRING): case number of the patient's visit for which the medical record is

requested.

[MedicalRecordContainer] (STRING): the document in the archive that is to be used for saving the
medical record.

[MedicalRecordAttachmentsContainer] (STRING): the document in the archive that is to be used
for saving medical record attachments.

Either

[MedicalRecord.id.root] (STRING): root of the ID of the document to be requested.
[MedicalRecord.id.extension] (STRING): extension of the ID of the document to be requested.
or

[ObjectIiD] (STRING): object ID from the archive of the document to be requested.

Return values:

[DMSContent] (STRING): DMSContent that was generated by this request.
[MedicalRecord.statusCode] (STRING): status code of the medical record. Available values are:
new

active

completed

obsolete

canceled

[MedicalRecord.completionCode] (STRING): completion code of the medical record. Available
values are:

AU authenticated

DI dictated

DO documented

IP in progress

IN incomplete

LA legally authenticated
PA pre-authenticated

[MedicalRecord.availibilityTime] (STRING): availability time of the document. This value is
returned as HL7 time stamp.

[MedicalRecord.storageCode] (STRING): storage code of the medical record. Available values
are:

AC active
AA active and archived
AR archived (not active)

PU purged

enaio® Page 146

enaio® server-api enaio®
[MedicalRecordAttachments] (STRING): list of names/links of the attachments as a comma-
separated list.

[FileCount] (INT): number of returned documents/files, including the medical record.

med.NotifyMedicalRecord
Description:

The document status and transitions can be edited with this job. For further information refer to HL7
V3 Specifications.

Parameter:
[Patientnumber] (STRING): patient number of the patient whose medical record is requested.

[Visitnumber] (STRING): case number of the patient's visit for which the medical record is
requested.

[MedicalRecordContainer] (STRING): the document in the archive that is to be used for saving the
medical record.

[MedicalRecordAttachmentsContainer] (STRING): the document in the archive that is to be used
for saving medical record attachments.

[MedicalRecord.id.root] (STRING): root of the ID of the document to be requested.
[MedicalRecord.id.extension] (STRING): extension of the ID of the document to be requested.
[MedicalRecord.statusCode] (STRING): status code of the medical record. Available values are:
new

active

completed

obsolete

canceled

[MedicalRecord.completionCode] (STRING): completion code of the medical record. Available
values are:

AU authenticated

DI dictated

DO documented

IP in progress

IN incomplete

LA legally authenticated
PA pre-authenticated

[MedicalRecord.availibilityTime] (STRING): availability time of the document. This value is
returned as HL7 time stamp.

enaio® Page 147

enaio® server-api
[MedicalRecord.storageCode] (STRING):
are:

AC active

AA active and archived

AR archived (not active)

PU purged

Return values:
[MedicalRecord.id.root] (STRING):
[MedicalRecord.id.extension] (STRING):
[MedicalRecord.statusCode] (STRING):
new

active

completed

obsolete

canceled

[MedicalRecord.completionCode] (STRING):

values are:

AU authenticated

DI dictated

DO documented

IP in progress

IN incomplete

LA legally authenticated
PA pre-authenticated

[MedicalRecord.availibilityTime] (STRING):

returned as HL7 time stamp.

[MedicalRecord.storageCode] (STRING):
are:

AC active
AA active and archived
AR archived (not active)

PU purged

med.GetSystemOID
Description:

enaio®

storage code of the medical record. Available values

root of the ID of the document to be requested.

extension of the 1D of the document to be requested.

status code of the medical record. Available values are:

completion code of the medical record. Available

availability time of the document. This value is

storage code of the medical record. Available values

The system's unique OID can be determined with this job.

enaio®

Page 148

enaio® server-api enaio®
ASN.1 Notation: {iso(1) member-body(2) de(276) din-certco(0) gesundheitswesen(76) instanzen-
identifikatoren(3) organisationen(1) optimal-systems(11)}

dot notation: 1.2.276.0.76.3.1.11

URN-notation: urn:oid:1.2.276.0.76.3.1.11

Return values:

[OID] (STRING): returns the OID for the system

enaio® Page 149

enaio® server-api ‘ enaio®

MNG Engine (Namespace mng)
This engine provides jobs for the administration of groups and users in enaio®.

mng.AddUserGroupAsc

mng.CreateGroup

mng.CreateUser

mng.DeleteGroup

mng.DeleteUser
mng.EmptyGroup

mng.GetGroupAttributes

mng.GetGroupList

mng.GetGroupMembers

mng.GetUserAttributes

mng.GetUserGroups

mng.GetUserProfile

mng.GetUserList

mng.RemoveUserGroupAsc

mng.SetGroupAttributes

mng.SetUserAttributes

w W W W W W W W W W W W W W W W W

mngq.StoreUserProfile

The following jobs can only be executed by users with administrative rights:
mng.AddUserGroupAsc

mng.CreateGroup

mng.CreateUser

mng.DeleteGroup

mng.DeleteUser

mng.EmptyGroup

mng.RemoveUserGroupAsc

mng.SetGroupAttributes

w W W W W W W W wWw

mng.SetUserAttributes

mng.AddUserGroupAsc
Description:

This job adds the specified users to a group. The user and the group can be specified either via the
GUID or ID.

Parameter:

Flags (INT4): not currently used

enaio® Page 150

enaio® server-api enaio®

AdmIinfo (BASE64): group assignment in XML format
Example:

Structure of Adminfo

<AdmInfo>

<Associations>

<Association osuid=""" osgid="""/>
<Association osuid=""" osgid="""/>

<! - -OR- - >

<Association user_id=""" group_id="""/>
<Association user_id=""" group_id=""/>
</Associations>

</AdmInfo>

Note:

Detailed description of AdmInfo

8 [osuid] (STRING): GUID of the user
§ [osgid] (STRING): Group GUID

8 [user_id] (STRING): User ID

8 [group_id] (INT): Group ID

See also:

mng.RemoveUserGroupAsc

mng.CreateGroup
Description:

This job creates a new user group. An entry is created in the database table 'gruppen’. The ID and the
Osguid are generated by the job and returned as XML.

Parameter:

Flags (INT4): not currently used

Grouplnfo (BASE64): group properties in XML format

HasEncoding (boolean): GrouplInfo contains ncoding (e.g. UTF-8)

Return values:

Grouplnfo (BASE64): group properties in XML format (id and osguid are set)
Example:

Structure of Grouplnfo

<AdmInfo>

<Groups>

<Group name="Test" profile="0" description="""/>
</Groups>

</AdmInfo>

Note:

Detailed description of Grouplinfo
§ id (INT): Group ID

§ name (STRING): Group name

enaio® Page 151

enaio® server-api enaio®

§ osguid (STRING): Group GUID
§ profile (LONG): ID of the profile user who is assigned to the group
§ description (STRING):description for the group

mng.CreateUser
Description:

This job creates a new user. A new data record is created in the database table 'benutzer'. The ID and
the Osguid are generated by the job and returned as XML.

Parameter:

Flags (INT4): not currently used

UserInfo (BASEG64): user properties in XML format

HasEncoding (boolean): UserInfo contains ncoding (e.g. UTF-8)

Return values:

UserInfo (BASE64): user properties in XML format (id and osguid are set)
Example:

Structure of Userinfo

<AdmInfo>

<Users>

<User account_type="0" comment=""" user="TESTUSER" flags="1"
changed="1" langid="0" locked="0" logincount=""0"
loginstation="" logintime="0" name="'Peter Muster"
osemail=""'

password="B62441422712357307" profile="-1" server_id="3"
station=""" supervisor="0" validfrom="" validto=""">
</User>

</Users>

</AdmInfo>

Note:

Detailed description of Xmlinfo

User: contains information on a user

8 account_type (INT): account type

§ NULL/O = user login

§ 1= Login of the application server

§ 2 =Login of ANONYMOUS

§ 3= Login of the application server (e.g. Java server)
comment (STRING): Field for comments (e.g. phone number)
user (STRING): User name

flags (INT): 0 = normal user, 1 = server or ANONYMOUS
changed (INT): 0 = profile was not changed; 1 = the profile was changed
id (INT): User ID

langid (INT): language ID (empty = German)

w W W W W W

enaio® Page 152

enaio® server-api enaio®

locked (INT): 1 = user is locked, otherwise 0
logincount (INT): number of login attempts
loginstation (STRING): name of the last login station
logintime (INT): time of the login (timestamp)

name (STRING): full name of the user

osemail (STRING): user e-mail

osguid (STRING): GUID of the user

password (STRING): encoded user password

profile (INT): -1 = user has no profile; 0 = user profile; >0 = ID of the assigned user profile
server_id (INT): ID of the server

station (STRING): name of the user workstation
supervisor (INT): -1 = supervisor, otherwise 0

validfrom (INT): user account valid from (timestamp)

w W W W W W W W W W W W W W

validto (INT): user account valid until (timestamp)

mng.DeleteGroup
Description:

This job deletes a group from the database table ‘gruppen’. A group can only be deleted if it has no
members (database table 'bgrel’).

Parameter:

Flags (INT4): indicates the parameter by which the group is to be identified
§ 0 - Parameter GroupGuid

§ 1 - Parameter Groupld

8 2 - Parameter GroupName

[GroupGuid] (BASE64): Group GUID

[Groupld] (BASE64): Group ID

[GroupName] (BASE64): Group name

See also:

mng.EmptyGroup

mng.DeleteUser
Description:

This job deletes a user from the database table "benutzer'. Group memberships of the user (bgrel),
system roles (ossysroles), subscriptions (osabonnement) and personal settings (osconf) will be deleted.
Furthermore it is possible to forward portfolios and the contents of the inbox to another user resp. to
entirely delete these data.

Parameter:

Flags (INT4): indicates by which parameter the user is to be identified

enaio® Page 153

enaio® server-api enaio®

§ 0 - Parameter User/where applicable Target
§ 1 - Parameter UserGuid/where applicable TargetGuid
§ 2 - Parameter Userld/where applicable Targetld

InheritanceFlags (INT4): indicates whether portfolios and the contents of the inbox are to be
forwarded to another user

§ 0 - portfolios and e-mails will be deleted

§ 1 - portfolios will be forwarded

§ 2 —e-mails will be forwarded

§ 3 - portfolios and e-mails will be forwarded

[User] (BASE64): User name

[UserGuid] (BASE64): User ID

[Userld] (BASE64): User name

[Target] (BASE64): user name (receives portfolios/emails)
[TargetGuid] (BASE64): user ID (receives portfolios/emails)
[Targetld] (BASE64): user name (receives portfolios/emails)

mng.EmptyGroup

Description:

This job empties a group. All user assignments will be deleted (database table 'bgrel’).
Parameter:

Flags (INT4): indicates the parameter by which the group is to be identified
8 0 - Parameter GroupGuid

8 1-Parameter Groupld

§ 2 - Parameter GroupName

[GroupGuid] (BASE64): Group GUID

[Groupld] (BASE64): Group ID

[GroupName] (BASE64): Group name

mng.GetGroupAttributes
Description:

This job returns the properties of the specified group.
Parameter:

Flags (INT4): not currently used

Group (STRING): Group name

Return values:

XmlInfo (STRING): group properties in XML format

Example:

enaio® Page 154

enaio® server-api enaio®

Structure of XmlInfo

<AdmInfo>

<Groups>

<Group id=""0"" name=""STANDARD" osguid=""C9BBC4B0OD7754065B3EA6232D7B70003"
profil="0" description=""">

</Group>

</Groups>

</Adminfo>

Note:

Detailed description of Xmlinfo

8 id (INT): Group ID

8 name (STRING): Group name

8§ osguid (STRING): Group GUID

8 profile (LONG): ID of the profile user who is assigned to the group
§ description (STRING):description for the group

See also:

mng.GetGroupList, mng.SetGroupAttributes

mng.GetGroupList
Description:

This job returns a list of all groups.

Parameter:

Flags (INT4): not currently used

Return values:

GroupList (STRING): list of all defined groups in XML format
Example:

Structure of GroupList

<AdmInfo>

<Groups>

<Group id=""0" name=""STANDARD" osguid=""C9BBC4B0OD7754065B3EA6232D7B70003"
profile="0" description=""></Group>

<Group id="157" name="TEST" osguid=""B36506740D764731836365D04333D3AD""
profile="79" description=""'></Group>

<Group id="18" name="ALL EMPLOYEES" osguid=""65A56409BB3FFFC687FCC9B90"
profile="0" description="""></Group>

</Groups>

</Adminfo>

Note:

Detailed description of GroupList

8 id (INT): Group ID

8 name (STRING): Group name

8§ osguid (STRING): Group GUID

8 profile (LONG): ID of the profile user who is assigned to the group

enaio® Page 155

enaio® server-api

§ description (STRING):description for the group
See also:

mnqg.GetGroupAttributes, mng.GetGroupMembers

mng.GetGroupMembers
Description:

This job returns a list of all members of the specified group.

Parameter:

Flags (INT4): indicates which parameter is to be used for the search

8 0 =search using the parameter GroupName
8§ 1 =search using the parameter GroupGUID
§ 2 =search using the parameter GrouplD
[GroupName] (STRING): Group name
[GroupGUID] (STRING): Group GUID
[GroupID] (INT4): Group ID

Return values:

UserList (STRING): list of all group members
Example:

Structure of UserList

enaio®

<AdmInfo>

<Users>

<User user="ROOT" id="2"" name="""
osguid=""C97ABFC32E09431192E4B13CF47293D6"'></User>
<User user="Testuser" id="49" name="Peter Muster"
osguid="'6759985B74A44747ACC93F031913006C"'></User>
</Users>

</AdmInfo>

Note:

Detailed description of UserList

Users: list of all group members

8 user (STRING): User name

8 id (INT): User ID

8 name (STRING): full name of the user
8 osguid (STRING): GUID of the user

mng.GetUserAttributes
Description:

This job returns the properties of the specified user.
Parameter:

Flags (INT4): not currently used

enaio® Page 156

enaio® server-api enaio®

User (STRING): user name from the DB field 'user.user'
Return values:

XmlInfo (STRING): user information in XML format
Example:

Structure of Xmlinfo

<AdmInfo>

<Users>

<User account_type="0" comment=""" user="TESTUSER" flags=""1"
changed="1" 1d="70" langid="0" locked="0" logincount="0"
loginstation="" logintime="0" name="Peter Muster"

osemai l=""" osguid=""A95EA1EEA16A4EDF916400F6E2F5BCF9""
password="B62441422712357307" profile="-1" server_id="3"
station=""" supervisor="0" validfrom="" validto=""">
</User>

</Users>

</AdmInfo>

Note:

Detailed description of Xmlinfo

User: contains information on a user

8 account_type (INT): account type

§ NULL/O = user login

§ 1= Login of the application server

§ 2=Login of ANONYMOUS

§ 3= Login of the application server (e.g. Java server)

comment (STRING): Field for comments (e.g. phone number)

user (STRING): User name

flags (INT): 0 = normal user, 1 = server or ANONYMOUS

changed (INT): 0 = profile was not changed; 1 = the profile was changed
id (INT): User ID

langid (INT): ID of the object definition language (empty = German)
locked (INT): 1 = user is locked, otherwise 0

logincount (INT): number of login attempts

loginstation (STRING): name of the last login station

logintime (INT): time of the login (timestamp)

name (STRING): full name of the user

osemail (STRING): user e-mail

osguid (STRING): GUID of the user

profile (INT): -1 = user has no profile; 0 = user profile; >0 = ID of the assigned user profile
server_id (INT): server ID

station (STRING): name of the user workstation

w W W W W W W W W W W W W W W W W

supervisor (INT): -1 = supervisor, otherwise 0

enaio® Page 157

enaio® server-api enaio®

§ validfrom (INT): user account valid from (timestamp)
§ wvalidto (INT): user account valid until (timestamp)
See also:

mng.SetUserAttributes

mng.GetUserGroups
Description:

This job returns a list of all groups to which the specified user belongs.
Parameter:

Flags (INT4): not currently used

UserGUID (STRING): GUID of the user

Return values:

GroupList (STRING): list of all groups in which the user is located.
Example:

Structure of GroupList

<AdmInfo>

<Groups>

<Group id=""0" name=""STANDARD" osguid=""C9BBC4B0OD7754065B3EA6232D7B70003"
profile="0" description=""></Group>

<Group id="157" name="TEST" osguid=""B36506740D764731836365D04333D3AD""
profile="79" description=""'></Group>

</Groups>

</Adminfo>

Note:

Detailed description of GroupList

Groups: list of all groups in which the user is located

§ id (INT): Group ID

name (STRING): Group name

osguid (STRING): Group GUID

profile (LONG): ID of the profile user who is assigned to the group

w w W W

description (STRING):description for the group

mng.GetUserList
Description:

This job returns a list of all users.
Parameter:

Flags (INT4): not currently used
Return values:

UserList (STRING): list of all users

enaio® Page 158

enaio® server-api

Example:

Structure of UserList

enaio®

<AdmInfo>

<Users>

<User user="ROOT" id="2" name=""
osguid=""C97ABFC32E09431192E4B13CF47293D6""></User>
<User user="Testuser" 1d="49" name="'Peter Muster"
osguid=""6759985B74A44747ACC93F031913006C""></User>
</Users>

</AdmInfo>

Note:

Detailed description of UserList

Users: list of all users

§ user (STRING): User name

§ id (INT): User ID

§ name (STRING): full name of the user
§ osguid (STRING): GUID of the user
See also:

mnq.GetUserAttributes

mng.GetUserProfile
Description:

This job passes the client the profile of a user.

Parameter:

Flags (INT):

8 HIWORD(Flags) = 1. LowDateTime and HighDateTime are returned
8 HIWORD(Flags) = 2: LowDateTime is returned

UserProfile (STRING): UserProfile

Return values:

FileCount (INT): FileCount equals 1

[LowDateTime] (INT): User profile date stamp in LowDateTime format
[HighDateTime] (INT): User profile date stamp HighDateTime

File list: file name with complete path

Return:

(INT): 0 = job successful, otherwise error code

See also:

mng.StoreUserProfile

mng.RemoveUserGroupAsc
Description:

enaio® Page 159

enaio® server-api enaio®

This job deletes an assignment of a user to a group (database table bgrel).

Parameter:

Flags (INT4): indicates which parameter is to be used

§ 0-Adminfo

§ 1-UserGuid

[AdmInfo] (BASE64): Group assignments that are to be deleted

[UserGUID] (STRING): user GUID (user is deleted from all groups where he is located)
Example:

Structure of Adminfo

<AdmiInfo>

<Associations>

<Association user_id=""" group_id=""/>
<! - -OR- - >

<Association osuid="" osgid="""/>
<Associations>

</AdmiInfo>

Note:

Detailed description of AdmInfo

8§ [osuid] (STRING): GUID of the user
§ [osgid] (STRING): Group GUID

8 [user_id] (STRING): User ID

8 [group_id] (INT): Group ID

mng.SetGroupAttributes
Description:

This job sets the properties of a group.

Parameter:

Flags (INT4): currently not used

Grouplnfo (BASE64): group properties in XML format
HasEncoding (boolean): Grouplnfo contains ncoding (e.g. UTF-8)
Example:

Structure of Grouplnfo

<AdmInfo>

<Groups>

<Group id="0" name=""STANDARD" osguid="AE38D1BB1F1C4CB98B5695A2935E0169"
profile="0" description="Test"></Group>

</Groups>

</AdmiInfo>

Note:

Detailed description of Grouplinfo
8 id (INT): Group ID

enaio® Page 160

enaio® server-api enaio®

name (STRING): Group name
osguid (STRING): Group GUID
profile (LONG): ID of the profile user who is assigned to the group

w w W wWw

description (STRING):description for the group
See also:

mng.GetGroupAttributes

mng.SetUserAttributes
Description:

This job sets the properties of a user.

Parameter:

Flags (INT4):

UserInfo (BASEG64): properties in XML format

HasEncoding (boolean): UserInfo contains ncoding (e.g. UTF-8)
Example:

Structure of UserInfo

<AdmInfo>

<Users>

<User account_type="0" comment=""" user="Test" flags=""1"
changed="1" id="67" langid="0" locked="0" logincount="0"
loginstation=""" logintime="0" name="Peter Muster' osemail=""

osguid="EF989801BA8847199335DD4FDEF30BC5""
password="BF754341546553351243620206006521266514574240603407""
profile="66" server_id="3" station=""" supervisor="0" validfrom="""
validto="""/>

</Users>

</AdmInfo>

Note:

Detailed description of Xmlinfo

User: contains information on a user

§ account_type (INT): account type

§ NULL/O = user login

§ 1= Login of the application server

§ 2=Login of ANONYMOUS

§ 3= Login of the application server (e.g. Java server)
comment (STRING): Field for comments (e.g. phone number)
user (STRING): User name

flags (INT): 0 = normal user, 1 = server or ANONYMOUS
changed (INT): 0 = profile was not changed; 1 = the profile was changed
id (INT): User ID

langid (INT): language ID (empty = German)

w wu W W W W

enaio® Page 161

enaio® server-api enaio®

locked (INT): 1 = user is locked, otherwise 0
logincount (INT): number of login attempts
loginstation (STRING): name of the last login station
logintime (INT): time of the login (timestamp)

name (STRING): full name of the user

osemail (STRING): user e-mail

osguid (STRING): GUID of the user

password (STRING): encoded user password

profile (INT): -1 = user has no profile; 0 = user profile; >0 = ID of the assigned user profile
server_id (INT): server ID

station (STRING): name of the user workstation
supervisor (INT): -1 = supervisor, otherwise 0

validfrom (INT): user account valid from (timestamp)

w W W W W W W W W W W W W W

validto (INT): user account valid until (timestamp)
See also:

mng.GetUserList, mng.GetUserAttributes

mng.StoreUserProfile
Description:

This job saves the user profile received by the client and writes a history file (same name, file extension
bac). The passed profile file is deleted on the client.

Parameter:
Flags (INT):

8 HIWORD(Flags) = 2: save date stamp in LowDateTime format; otherwise use LowDateTime
format and HighDateTime format

UserProfile (STRING): Name under which the file is to be saved
LowDateTime (INT): date stamp in LowDateTime format
HighDateTime (INT): date stamp in HighDateTime format

File list: name and path of the profile file

Return:

(INT): 0 = job successful, otherwise error code

See also:

mng.GetUserProfile

enaio® Page 162

enaio® server-api ‘ enaio®

OCR Engine (Namespace ocr)

This engine provides jobs for text recognition.
§ ocr.DoOCR
§ ocr.DoDocOCR

ocr.DoOCR
Description:

This job performs text recognition for the passed file and returns the recognized text as a text file.
Parameter:

Flags (INT4): not currently used

Type (INT4): 1 = texts in multiple columns (e.g. newspaper articles) are to be recognized, otherwise 0
File list: name and path of the file for which text recognition is to be performed

Return values:

File list: name and path of the text file that contains the recognized text

ocr.DoDocOCR
Description:

This job performs text recognition for the specified enaio® document and returns the recognized text
as a text file.

Parameter:

Flags (INT4): not currently used

Type (INT4): 1 = texts in multiple columns (e.g. newspaper articles) are to be recognized, otherwise 0
DoclD (INT4): ID of the document

Return values:

File list: name and path of the text file that contains the recognized text

enaio® Page 163

enaio® server-api ‘ enaio®

Standard Engine (Namespace std)

Functions for file-oriented document management are implemented in the standard engine. In
particular functions for saving and loading documents, archiving and realizing document exchange
between multiple servers.

The Standard engine takes care of the management of the application server's WORK, CACHE and
archive area.

§ Work, cache, and archive management

§ File administration

8 Internal jobs
8 Other jobs

Work, Cache and Archive Management
std.CleanUpCache
std.ClearFromCache
std.DoArchive
std.DoPrefetch
std.MoveToCache
std.StorelnCache
std.StorelnCacheByID
std.StorelnCacheDirect
std.StorelnWork
std.UndoArchive

w w W W W W W W W W

std.CleanUpCache

Description:

This job clears the contents of CACHE.

Parameter:

[Flags (INT): priority (default value 2)

§ 0 = files will be deleted until the minimum cache size is reached

8 1 =files will be deleted which have exceeded the maximum limit for days inside the cache

§ 2 =combination of priority 0 and 1: Attempts to delete files will be made until the minimum cache
size has been reached, however, only files that have been in the CACHE for more than the
maximum number of days will be deleted. It is possible that the maximum cache size is not
exceeded.

§ 8 =files will be deleted until the minimum document number is reached (see parameter Low)
High (INT): maximum cache size in MB, if this value is exceeded, the CACHE will be cleared

Low (INT): minimum cache size in MB; if flags = 8, the minimum document number (in thousands)
will be indicated here

enaio® Page 164

enaio® server-api enaio®
Days (INT): maximum number of days documents remain in the cache [ExtendDiagnostic] (INT):
Logging options

8 0=inthis case, only files are stated in the report when they cannot be deleted

8 1 =all deleted files are logged (default=0)

Return:

(INT): 0 = job successful, otherwise error code

std.ClearFromCache
Description:

This job deletes the specified object from the cache.
Parameter:

dwObjectID (INT): ID of the object
dwObjectType (INT): Object type

Return:

(INT): 0 = job successful, otherwise error code

std.DoArchive
Description:

This job archives all objects of a given type set as ‘archivable'. This job will only work if archiving was
set up correctly first (media, sets,...).

Parameter:
dwODbjectType (INT): type of objects to be archived
Return:

(INT): 0 = job successful, otherwise error code

std.DoPrefetch
Description:

This job loads the specified object from a storage medium (e.g. jukebox) into the cache to reduce
access times.

Parameter:

Flags (INT): transfer options

8 0 =slide file and objects are transmitted

8 1 =only the object files are transmitted

8 2 =only the slide file of the object is transmitted
dwObjectID (INT): ID of the object

dwObjectType (INT): Object type

DocState (INT): contains the state of the document in the LOWORD and the Read-Write flag in the
HIWORD (the job processes archived documents, only)

enaio® Page 165

enaio® server-api enaio®

FileCount (INT): number of files, but which have no role to play here
Return:

(INT): 0 = job successful, otherwise error code

std.GetDocumentSlide
Description:

This job creates a slide for a document and returns it.
Parameter:

ObjectID (INT): ID of the object

Flags (INT):

GETDOCSLIDE_FLAG_NEEDEDONLY(0): the requested size is returned, and if not
available then an error

GETDOCSLIDE_FLAG_DEFAULTALLOWED(1): the requested size is returned and if not available
the 96x96, to know what is returned.

GETDOCSLIDE_FLAG_BOTHY(2): if available, the queried size will be returned and 96x96
GETDOCSLIDE_FLAG_ALL(3): all slides

Several files will be returned for GETDOCSLIDE_FLAG_ALL and GETDOCSLIDE_FLAG_BOTH.
They have extensions such as DIA001, DIA002 etc.

There are also output parameters like DIA001, DIA002 etc. which determine the size of each slide:
DIA0OL1 = 10x10

DIA002 = 96x96 etc.

Width and height can be 0 for GETDOCSLIDE_FLAG_NEEDEDONLY and
GETDOCSLIDE_FLAG_DEFAULTALLOWED

default values will be used in this case:

if (dwWidth == 0) dwWidth = DEFAULT_SLIDE_WIDTH;
if (dwHeight == 0) dwHeight = DEFAULT_SLIDE_HEIGHT;
Height (INT): height of the slide; if 0, 96 will be used

Width (INT): width of the slide; if 0, 96 will be used

Return:

(INT): 0 = job successful, otherwise error code

std.MoveToCache
Description:

This job transfers the specified object from one server group to another. The client can only open this
object as read-only object.

Parameter:
dwObjectID (INT): ID of the object
dwODbjectType (INT): Object type

enaio® Page 166

enaio® server-api enaio®

Return:

(INT): 0 = job successful, otherwise error code

std.StorelnCache
Description:

This job sends the specified document files to an enaio® client. If the enaio® client still has the
document in its cache, the digest value can be calculated and passed to the job. The server also
calculates the digest value of the specified document. If both digest values are identical, the server does
not send the document to the enaio® client.

Parameter:

Flags (INT): transfer options

§8 0 =slide file and objects are transmitted

§ 1 =only the object's pages are transmitted

§ 2 =only the slide file of the object is transmitted

dwObijectID (INT): ID of the object

dwODbjectType (INT): type of the selected document

DocState (INT): indicates whether the document is to be opened for reading or writing
8 HIWORD =0 -> the document is opened for editing

§ HIWORD =1 -> the document is opened for viewing

FileCount (INT): number of files, but which have no role to play here

[Digest] (STRING): digest value calculated by client application for the requested document.

[IncludeDeleted] (BOOLEAN): in the case of true, documents in the trash can are also taken into
account.

[lgnoreHashCheck] (BOOLEAN): in the case of true, the hash value/signature check is turned off,
although it may possibly be switched on in the registry.

[AddAnnotations] (BOOLEAN): if available and true, annotations are then also burned into the image
files.

Return:
(INT): 0 = job successful, otherwise error code
Return values:

FileCount (INT): number of files transferred to the cache

std.StorelnCacheByID
Description:

This job sends the specified document files to an enaio® client.
Parameter:
Flags (INT): transfer options

8 0 =slide file and objects are transmitted

enaio® Page 167

enaio® server-api enaio®

§ 1 =only the object files are transmitted
§ 2 =only the slide file of the object is transmitted
dwObjectID (INT): ID of the object

[Convert] (INT): 0 = no conversion
1 = documents with main type 1, 2, 3 or 4 are converted to PDF.
8 = TIFF documents with main type 2 or 3 are combined into a multipage TIFF

[WhenCOLDThenTIFF] (INT): 1 = ASCII cold files are returned in TIFF format (only observed if
Convert= 0 is set)

[AddAnnotations] (BOOLEAN): if available and true, annotations are then burned into the image files.
Return:

(INT): 0 = job successful, otherwise error code

Return values:

FileCount (INT): number of files transferred to the cache

File list: path and name of files that were transferred to the cache

std.StorelnCacheDirect
Description:

This job returns a specified document via its ID. The job can be used if the enaio® server and enaio®
client run on the same computer.

Parameter:

Flags (INT): transfer options

§8 0 =slide file and objects are transmitted

§ 1 =only the object files are transmitted

§ 2 =only the slide file of the object is transmitted
dwObijectID (INT): ID of the object

Path (STRING): path to which the object files are written

[AddAnnotations] (BOOLEAN): if available and true, annotations are then also burned into the image
files.

Return:

(INT): 0 = job successful, otherwise error code

Return values:

FileCount (INT): number of files transferred to the cache.
File_N (STRING): name of the nth source file

std.StorelnWork
Description:

This job copies all specified documents into the specified WORK directory (it is based on the object
type and object ID). If it already contains files with the specified ObjectID, these files are deleted first.

enaio® Page 168

enaio® server-api enaio®

Parameter:

Flags (INT):

8 0= Flags: the files will be deleted

8 1 & Flags: the files will not be deleted (use for 'StorelnWorkDirect")

8 2 & Flags: no HardLinks are created for the files (use for variant administration)
dwObjectID (INT): ID of the object

dwObjectType (INT): Object type

FileCount (INT): Number of files

File list: name and path of files to be written to the work directory.

bAddFiles (INT): if 1, new files do not replace existing files but will be added.
bAddFront (INT): if 1, new files will be added in the front.

DocFlagsNeeded (INT): if available, the column 'Flags' in the object table is set to this value.
Return:

(INT): 0 = job successful, otherwise error code

std.UndoArchive
Description:

This job restores the specified document from the jukebox in the WORK directory.
Parameter:

Flags (INT): options for document status

§ 1 =documents which are written to the WORK directory receive the status ‘archivable’

8 0= documents which are written to the WORK directory receive the status 'not archivable'
dwObjectType (INT): object type to be dearchived

dwObijectID (INT): ID of the object

Return:

(INT): 0 = job successful, otherwise error code

File administration
std.DeleteDocumentVersion
std.DeleteObject
std.DeleteDocument
std.DeleteRemark

std.FindDocumentDigest
std.GetDocStatistics
std.GetDocStream

std.GetDocumentDigest

w W W W W W W W W

std.GetDocumentPage

enaio® Page 169

enaio® server-api enaio®

std.GetDocumentStream
std.GetDocVariant
std.SetActiveVariant
std.GetDocVersion
std.GetObjectInfo
std.GetRemark

std.GetSignedDocument

std.MergeDocuments
std.MergeFolder

std.RestoreDocVersion
std.RestoreObiject

std.SetHistory
std.StoreRemark

std.StoreSignedDocument

std.Unknown2Known

w wu W W W W W W W W W W W W W W

std.SetPlannedRetention

std.FindDocumentDigest

Description:

This job looks for a document with the same hash value. The search is performed in the osdochash
table, only entries with osguid = NULL or osguid =", i.e. versions, are not checked.

Parameter:

Flags (INT): not currently used, should be 0.
Digest (STRING): the hash value being searched
Return:

(INT): 0 = job successful, otherwise error code
Return values:

Result: Document IDs and types of found documents, in the following format: 11=131072;22=131072;
etc.

std.CalcDocumentDigest
Description:

This job provides a given document with the hash value and, optionally, the signature. Hash value and
signature are guaranteed by the server. To use this job, please contact the support team of OPTIMAL
SYSTEMS.

Parameter:
dwObjectID (INT): ID of the object
dwObjectType (INT): selected object type

enaio® Page 170

enaio® server-api enaio®

Flags (INT): currently not used, should be 0.

Pwd (STRING): if the password is incorrect, no action is performed.
Sign (BOOLEAN): if true, the document will be signed.

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Digest (STRING): hash value of files.

std.DeleteDocumentVersion
Description:

This job deletes a specific version of a document and, if necessary, the corresponding digital signature.
Parameter:

Flags (INT): options for deletion

8 0= deletes document version only

8 1 =deletes digital signature

OSOBIJID (INT): ID of the document

OSOBJTYP (INT): Document type

OSID (STRING): version ID of the document

Return:

(INT): 0 = job successful, otherwise error code

std.DeleteObject
Description:

This job identifies an object (document, register, folder) based on the specified parameters and deletes
it. The parameters ‘dwParentID' and ‘dwParentType' are only applied to documents. If a document has
several entries in the table 'sdrel' and dwParentID = 0, all entries are deleted from this table. If this
parameter is not 0, only 1 entry will be deleted.

Parameter:
sDeleteMethod (STRING): method for deletion

§ 'Delete’ -> object will be deleted (without trash can) or objects which are already located in the
trash can are permanently deleted

8 'DeleteWithDocs' -> valid for cabinet/register; all registers/documents contained in the object are
deleted

8 'Recycle' -> The object is moved to the trash can.
dwObjectID (INT): ID of the object

dwObjectType (INT): object type to be deleted

dwParentID (INT): ID of the parent of the selected object
dwParentType (INT): parent type of the object to be deleted

enaio® Page 171

enaio® server-api enaio®

[sSpecific] (STRING): children = sub-objects are deleted, otherwise empty
Return:

(INT): 0 = job successful, otherwise error code

Return values:

[sInfo]: only returned if a register/cabinet to be deleted contains sub-objects

[Clause]: always 1

std.DeleteDocument
Description:

This job deletes the document files for a document. This document remains as a document without
pages.

Parameter:

dwObjectID (INT): ID of the object

dwObjectType (INT): object type to be deleted

Return:

(INT): 0 = job successful, otherwise error code

std.DeleteRemark
Description:

This job deletes a note belonging to a document.
Parameter:

Remldent (INT): Note ID

dwODbjectType (INT): Object type

Return:

(INT): 0 = job successful, otherwise error code

std.FindDocumentDigest

Description:

This job looks for a document with the same hash value. The search is performed in the osdochash
table, only entries with osguid = NULL or osguid =", i.e. versions, are not checked.

Parameter:

Flags (INT): not currently used, should be 0.
Digest (STRING): the hash value being searched
Return:

(INT): 0 = job successful, otherwise error code
Return values:

Result: Document IDs and types of found documents, in the following format: 11=131072;22=131072;
etc.

enaio® Page 172

enaio® server-api enaio®

std.GetDocStatistics

Description:

This job returns the document information for the specified object.

Parameter:

dwObjectType (INT): type of the objects

dwObjectID (INT): ID of the object

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Statistics (STRING): document information separated by '@

Timestamp of the document

Nr. of the server group where the document is located

Name of the media where the document is located (‘"WORK' is also a valid media name)
Number of documents of the object

File size of the document in bytes (only if number = 1, slides will not be counted)
File name (incl. path)

No. of the module type

Note information, the contents is 'NOTE' if the note has been made on an object
current document state (DocState)

Object type

w W W W W W W W W W

std.GetDocStream
Description:

This job was replaced by GetDocumentStream.

std.GetDocumentDigest
Description:

This job returns the digest value of the document files.

Parameter:

dwObjectID (INT): ID of the object

dwObjectType (INT): Document type

[dwFlags] (INT): 0 = digest value is read from DB; 1 = digest value is calculated.

[CheckSignature] (BOOLEAN): the signature is also checked in the case of 1. In this case, the output
parameter Signature is returned.

Return:
(INT): 0 = job successful, otherwise error code

Return values:

enaio® Page 173

enaio® server-api

[LocalDigest]: Digest value that was calculated (only with flags = 1)
TableDigest: digest value from DB (flags = 0,1)

[Signature]:

0 — Signature exists and was verified

1 - Signature does not exist

2 — Signature could not be verified due to a technical error

3 — Signature exists and is invalid

std.GetDocumentPage
Description:

This job returns a specified page of a specified document.
Parameter:

dwObjectID (INT): ID of the object

Page (INT): page number of the document

Return:

(INT): 0 = job successful, otherwise error code

Return values:

nModule (INT): main document type

File list: path and name of the file that was transferred

std.GetDocumentStream
Description:

This job reads the section of a file, creates a new file out of it and returns it.

Parameter:

dwObjectID (INT): ID of the object
dwObjectType (INT): Object type

PageNum (INT): page number from which will be read
dwOffset (INT): offset (will be read from this byte)
dwLength (INT): number of bytes that will be read
Return:

(INT): 0 = job successful, otherwise error code
Return values:

File list: path and name of the created file

Count (INT): number of created files

Note:

Errors which can occur in this job.

enaio® Page 174

enaio®

enaio® server-api enaio®

ERR_WRONGPARAM: the offset is larger than the file.
ERR_GETOBJECTDEFPARAM: The object type is unknown.
ERR_GETPARAMETER: too few (valid) parameters transferred.
ERR_SQLSELECT: errors occurred during DB search requests.
ERR_NOTDEFINED_YET: The object is located on a remote server.
ERR_INSOURCE: the file cannot be found or opened.
ERR_INDESTINATION: the destination file cannot be created.

w W W W W W W

std.GetDocVariant
Description:

This job creates a new variant of the selected document.

Parameter:

sDocVer (STRING): number of the new variant

bTransferPlannedRetention (BOOLEAN) indicates if the set retention date will be applied or not.
dwParentID (INT): ID of the object

dwObjectType (INT): selected object type

dwMainType (INT): Main type of new variant

bAddFiles (INT): if 1, the new files (if attached) will be added and will not replace the old ones.
bAddFront (INT): if 1, the new files will be added in the front.

Return:

(INT): 0 = job successful, otherwise error code

Return values:

dwVariantID: ID of newly created variant

std.SetActiveVariant
Description:

This job activates a variant.

Parameter:

dwPrevActVarID (INT): ID of the current variant
dwNextActVarlD (INT): ID of the variant to be activated
dwObjectType (INT): selected object type

Return:

(INT): 0 = job successful, otherwise error code

Return values:

enaio® Page 175

enaio® server-api enaio®

std.GetDocVersion
Description:

This job returns the version of the selected document.
Parameter:

GUID (STRING): ID of the version

dwObjectID (INT): ID of the object

dwObjectType (INT): selected object type

Return:

(INT): 0 = job successful, otherwise error code
Return values:

File list: path and name of the file, which was returned

std.GetObjectInfo
Description:

This job returns the desired information (status or size) of the selected object.
Parameter:
dwlinfoFlag (INT): 0 = status of the object is determined, 1 = size of the object is determined
dwObjectType (INT): type of the objects
dwObjectID (INT): ID of the object
Return:
(INT): 0 = job successful, otherwise error code
Return values:
ServerInfo (STRING): contains the requested information
§ dwinfoFlag = 0: status is determined
§ 0= document does not contain any pages
§ 1=Documentis archived
§ 2 =Document is not archived / cannot be archived
§ 3= Document state cannot be determined
8 dwlnfoFlag = 1. size of the documents is determined (total of all object documents)
§ 0 =document does not contain any pages
§ [N] = the size of the document files (incl. SLIDE) in bytes

std.GetRemark
Description:

This job returns a note which is identified by the object type and the Remldent (notes ID).
Parameter:

Flags (INT): must always be 0
enaio® Page 176

enaio® server-api

Remldent (INT): Note ID

dwObjectType (INT): Object type

Return:

(INT): 0 = job successful, otherwise error code

Return values:

FileCount (INT): is always 1 since only one file is output

File list: path and file name of the searched note

std.GetSignedDocument
Description:

This job returns a digitally signed document from the server to the client.

Parameter:

OSOBIJID (INT): ID of the selected object
OSID (STRING): ID of the version
OSOBIJTYP (INT): selected object type
Return:

(INT): 0 = job successful, otherwise error code
Return values:

nFileCount (INT): Number of files
dwUserID (INT): User ID

dwTimeStamp (INT): Model creation time
sTrust (STRING):

sFirstName (STRING): first name of the user
sStation (STRING): Computer name

sName (STRING): User name

sClass (STRING):

std.MergeDocuments
Description:

enaio®

This job adds document pages of one specified object to another destination object. The document
types of both objects must match. The source document will ‘lose’ its document pages after this action.

Parameter:

dwObjectID1 (INT): ID of the destination object
dwObjectTypel (INT): destination object type
PageCountl (INT): page count of the destination object
dwObjectID2 (INT): ID of the object to be attached

dwObjectType2 (INT): type of object to be attached
enaio® Page 177

enaio® server-api enaio®

PageCount2 (INT): page count of the object to be attached
Return:

(INT): 0 = job successful, otherwise error code

std.MergeFolder
Description:

This job merges two folders within the database by moving all documents and registers from the source
folder to the destination folder.

Parameter:

Flags (INT): 1 = the source folder will be deleted, otherwise 0
dwObjectType (INT): object type

FolderDest (INT): ID of the destination folder

FolderSource (DWORD): ID of the source folder

Return:

(INT): 0 = job successful, otherwise error code

std.RestoreDocVersion
Description

This job restores a document version as the current document.
Parameter:

GUID (STRING): ID of the version to be restored
OSSTATION (STRING): computer name of the calling client
dwObjectID (INT): ID of the object

dwObjectType (INT): Object type

dwUserld (INT): User ID

Return:

(INT): 0 = job successful, otherwise error code

std.RestoreObject
Description:

This job restores an object from the trash can.

Parameter:

sRestoreMethod (STRING): string describing the restore method
8 SingleRestore = restore the specified object only

8 RestoreAllEntity = restore sub-objects of the specified object
dwObijectID (INT): ID of the object

dwObjectType (INT): Object type

enaio® Page 178

enaio® server-api enaio®

dwParentID (INT): ID of the object to where the specified object is to be restored
dwParentType (INT): object type to where the specified object is to be restored
Return:

(INT): 0 = job successful, otherwise error code

std.SetHistory
Description:

This job adds an entry in the 'osobjhist’ database tab for the indicated object.
Parameter:

sinfo (STRING): information about the action that was carried out
dwObjectID (INT): ID of the object

dwObjectType (INT): Object type

Return:

(INT): 0 = job successful, otherwise error code

std.StoreRemark
Description:

This job saves a note in a directory within the NOTE directory which is specified by the object type.
Parameter:
Remldent (INT): Note ID

dwObjectType (INT): object type from which the directory within the NOTE directory is determined
and then created.

File list: path and name of the note file (TXT) to be stored
Return:

(INT): 0 = job successful, otherwise error code

std.StoreSignedDocument
Description:

This job saves a signed document on the server.
Parameter:

OSFIRSTNAME (STRING): first name of the user
OSNAME (STRING): User name

OSOBICLASS (STRING): Object class
OSSTATION (STRING): Workstation

OSTRUST (STRING):

OSOBJID (INT): ID of the selected object
OSTIMESTAMP (INT): Timestamp

enaio® Page 179

enaio® server-api enaio®

OSOBJTYP (INT): selected object type

OSUSERID (INT): User ID

OSSIGNATURE file: file with signature content will be deleted
OSSIGHEADER file: file with signature header content will be deleted
OSSIGTEXT file: file with signature text content will be deleted

File for saving: file to be saved

Return:

(INT): 0 = job successful, otherwise error code

std.Unknown2Known
Description:

This job converts a typeless document into a document with the passed type.
Parameter:

Flags (INT):

§ LOWORD(Flags) = 1 then:

§ HIWORD(Flags) = 0 --> the original module number is specified by the HIWORD parameter
(dwObijectType)

§ HIWORD(Flags) != 0 --> the original module number is specified by the HIWORD parameter
(flags)
dwObjectID (INT): ID of the object
dwObjectType (INT): object type to which the specified document is to be transferred
Return:

(INT): 0 = job successful, otherwise error code

std.SetPlannedRetention
Description:

This job sets the intended retention time for a document.

Parameter:

Flags (INT): not currently supported, should be 0

dwObjectID (INT): ID of the object

dwObjectType (INT): object type to which the specified document is to be transferred
sRetentionDate (STRING): retention date in the format YYYY/MM/DD

Output parameters:

sRetentionDate (STRING): set retention time in the format YYYY/MM/DD

Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 180

enaio® server-api enaio®

std.AdjustRetentions

Description:

The job adjusts the retention date of an archived document to the scheduled retention date.
Parameter:

Flags (INT): not currently supported, should be 0

dwObjectID (INT): object ID (optional)

dwObjectType (INT): object type. If dwObijectID is not indicated, documents of this type will be
adjusted.

Output parameters:

sRetentionDate (STRING): set retention time in the format YYYY/MM/DD; the parameter is set only if
dwObjectID was indicated.

Return:

(INT): 0 = job successful, otherwise error code

Internal Jobs
Internal jobs are generally used only by the standard DMS engine itself.
§ std.ObjectTransfer

std.ObjectTransfer
Description:

This job transfers an object from a foreign (not local) work directory into the local work or cache
directory or writes the complete local work directory into the local cache directory or deletes the local
work directory.

Parameter:
sAction (STRING): action to be executed

§ FromForeignWorkToLocalWork = transfers an object from a foreign (not local) work directory
into the local work directory

8 FromForeignWorkToLocalCache = transfers an object from a foreign (not local) work directory
into the local cache directory

§ MoveLocalWorkToLocalCache = writes the whole local work directory to the local cache directory
§ DeleteLocalWork = deletes the local work directory

dwObijectID (INT): ID of the object

dwObjectType (INT): selected object type

Return:

(INT): 0 = job successful, otherwise error code

Other jobs
§ std.CheckSource

§ std.ConfigVarc
enaio® Page 181

enaio® server-api enaio®

std.DiskSpace
std.FileTransfer

std.GetTemplates
std.IndexDataChanged

std.PackDirectory

std.TransformlIndexData

std. ZipDocument

w wu W W W W W

std.CheckSource
Description:

This job replaces a path variable in the format '%ETCPATH%' with an absolute path and checks
whether the indicated file exists in this path.

Parameter:
Flags (INT): not currently supported-> transfer 0

Source (STRING): path variable to be replaced and the name of the file whose existence is to be
checked

Return:

(INT): 0 = job successful, otherwise error code
Return values:

State (INT): 0 = file does not exist; 1 = file exists
Note:

supported path variables

8§ %SERVERROOT%

%ETCPATHY%

%WORKPATH%

%LOGPATHY%

%CLIENTETC%

w W w W

std.ConfigVarc
Description:

This job can only be executed using the Enterprise Manager. This job configures the parameters of the
virtual archives.

Parameter:

SAction (STRING): action to be executed
§ Get = returns the parameters of VARC
8 Set = sets the parameters of VARC
Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 182

enaio® server-api enaio®

std.DiskSpace
Description:

This job determines the free storage space on the hard disk where the work directory is located and
sends the information by e-mail to the system administrator (defined in the registry).

Return:

(INT): 0 = job successful, otherwise error code

std.FileTransfer
Description:

This job transfers one or more files from a source path to a destination path (flags = 0/2), deletes the
indicated files (flags = 4) or provides the digest value of a file (flags = 5).

Parameter:

Flags (INT): job options (see table)

FileCount (INT): Number of passed File_ parameters
File_[0..n] (STRING): see table

File list: see table

Return values:

Count (INT): always 0 (no longer used)

[Digest]: digest value of the file (only with flags = 5)
Note:

Only certain parameters will be used depending on the respective job options. The following table
depicts the use of parameters.

Input parameters Return
FileCount File_[0..n] File list
0 =fileswill be | Number of Without input files: Path and name of no
copied with the | passed File_ | File_0 = destination path+file | the source file(s)
WinApi 32 parameters name
function File_1 = source path+file name
'‘CopyFile' File_2 = destination path+file
name
File_3 = source path+file name
etc.

With input files:
File_0 = destination path+file

name
File_1 = destination path+file
name
etc.
2 =files are Number of Without input files: Path and name of no

enaio® Page 183

enaio® server-api

enaio®

copied with the | passed File_ | File_0 = destination path+file | the source file(s)
WinApi32 parameters name
functions File_1 = source path+file name
'‘CreateFile’, File_2 = destination path+file
'ReadFile’ and name
"‘WriteFile' File_3 = source path+file name

etc.

With input files:

File_0 = destination path+file

name

File_1 = destination path+file

name

etc.
4 =fileswill be | Number of File_0 = path+file name no no
deleted passed File_ | File_1 = path+file name

parameters etc.

5 =digest value | Number of File_0 = path+file name no Calculated
will be passed File_ | File_1 = path+file name digest value
calculated parameters etc. for file(s)

std. GetTemplates

Description:

This job returns a list of all templates for the indicated object type. If the parameter ‘dwObjectType' is

not passed or passed with the value -1, the templates will be returned for all object types.

Parameter:

[dwObjectType] (INT): Object type for which the templates are to be returned

Return values:

nCount (INT): Number of templates

ObjectType[1 ... nCount] (INT): selected object type
Templateld[1 ... nCount] (INT): template ID
Aliases[1 ... nCount] (STRING): alias name
Editor[1 ... nCount] (STRING): editor name
FileName[1 ... nCount] (STRING): File name

Extension[1 ... nCount] (STRING): extension name

NameSpace[1 ... nCount] (STRING): namespace name

Return:

(INT): 0 = job successful, otherwise error code

enaio®

Page 184

enaio® server-api enaio®

std.IndexDataChanged
Description:

This job tells the index server that the index data of an object have changed.
Parameter:

Flags (INT): 1 = the 'osowner field in DB tab 'objectXXX'" is changed, otherwise the 'osowner’ field is
not changed

Action (INT): action executed with the object (actions are listed in the asdll.h file)
dwObjectID (INT): ID of the object

dwODbjectType (INT): Object type

Info (STRING): information that is written to the 'osobjhist’ database tab

GUID (STRING): unique key of the 'osobjhist' DBtab

Return:

(INT): 0 = job successful, otherwise error code

std.PackDirectory
Description:

This job packs the contents of the full text directory into a CAB file and sends the file to the receiving
server. The receiving server unpacks the CAB file and adds all full text files into its full text directory.

Parameter:
dwPort (INT): IP port of the receiving server

sComsString (STRING): IP address of the receiving server in the format addr1#portl;addr2#port2; etc.
‘addr' corresponds to the ComString column from the server table.

sAction (STRING): options for this job

§ Pack = pack the contents of the full text directory into a CAB file

§ Send =send CAB file

8 DeleteSource = contents of the full text directory is deleted

sRoot (STRING): directory from which subdirectories and files are to be unpacked
dwCabSize (INT): max. size of the CAB file in KB

sCabDir (STRING): directory into which the CAB files are to be saved

sAddress (STRING): string in which all servers of the destination group are listed (in the format AS.ini
file)

Return:

(INT): 0 = job successful, otherwise error code

std.TransformindexData
Description:

This job exports full text index data according to its parameters. This job is called in the archive by
axacwexp.dll.

enaio® Page 185

enaio® server-api enaio®

Parameter:

dwObjectType (INT): Object type

sAction (STRING): action options

§ Deletelndex = full text index data will be deleted

§ Newlndex = new full text index data will be inserted

§ Updatelndex = as 'Newlindex’, but additionally to RW the field '<UPDATE>' will be inserted as
well.

blgnoreFieldSpecific (BOOL): full text properties for fields
8 0= full text properties apply to every field
§ 1 =full text properties are ignored by every field

[dwObijectID] (INT): object ID (if ID = 0 or not available in ListParameterlIn, then all objects with type
= dwObjectType are considered. Otherwise only this object will be taken into account.)

[bWriteFiles] (BOOL): export options (default value is 0)
§ 0= only index data (without document files) will exported for full text search
§ 1 =document files will be exported for full text search

[iAction] (INT): action to be executed (defined in the file asdll.h)

std. ZipDocument
Description:

This job packs one or more file(s).

Parameter:

bDeleteSource (INT): 1 = source files are deleted, otherwise 0
Input file list: name and path of the file(s)

Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 186

enaio® server-api ‘ enaio®

Full-Text Engine (Namespace vtx)

The full text engine is for processing the clients’ full text requests. Various search engines can be
transparently integrated for the client.

The following full text search engines are supported at the moment:

name Short name
(registry)

Microsoft SQL Server Full Text ms

OSFTS lu

Microsoft Index Server (discontinued) mi

Convera RetrievalWare rw

The OSFTS engine is often also referred to as the Lucene engine or simply osfts.

The Microsoft Index Server is still supported, but it is no longer recommended for new installations.
Full text engine jobs

vix.CleanupClient

vtx.CloseQuery

vix.GetDocument

vix.GetEngineName
vitx.GetSimilarDMSObijects
vix.GetMaxHits

vtx.IsOntologySearchEnabled
vitx.IsSearchForSimilarDMSObjectsEnabled
vitx.OpenObjectQuery
vitx.OpenWordListQuery

w W W W W W W W W W wWw

In each job description below "Engines”, the short name of the full text engine is noted that
supports the job. If a full text engine does not support a job, executing the job has no effect and an
empty result set will be returned.

vtx.CleanupClient
Description:

This job deletes all full-text queries for the indicated client application and frees related resources.
Parameter:

Flags (INT): not currently supported

Client (STRING): Client

Return:

enaio® Page 187

enaio® server-api enaio®

(INT): 0 = job successful, otherwise error code
Engines:

rw

vix.CloseQuery
Description:

This job closes a query which is identified by a GUID, thereby freeing resources.
Parameter:

Flags (INT): not currently supported

Guid (STRING): query guid. See GUID return parameter for OpenObjectQuery.
Return:

(INT): 0 = job successful, otherwise error code

Engines:

lu, rw

vtx.GetDocument
Description:

This job returns a document which is identified by the query Guid and the Hitld.
Parameter:

Flags (INT): not currently supported

Guid (STRING): query guid. See GUID return parameter for OpenObjectQuery.
Hitld (INT): document's hit ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

File list: path and name of the requested file

Engines:

lu, rw

vtx.GetEngineName
Description:

This job returns the short name of the full text engine (e.g. ms: for Microsoft SQL Server Full Text)
from the registry (path VTX -> engine).

Parameter:
Flags (LONG): not currently used
Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 188

enaio® server-api enaio®

Return values:
Result (STRING): short name of the full text engine. See list of supported full text engines.
Engines:

All engines

vix.GetSimilarDMSObijects
Description:

This job returns a list for a DMS object containing other objects whose text is similar to the contents of
the passed object.

Note:

This search for objects is currently only supported if OSFTS is used as the full-text engine, ‘intrafind’ is
configured there as the analyzer, and the OKM license is available. Whether the search is supported,
can be determined with vitx.IsSearchForSimilarDMSObjectsEnabled.

Parameter:
ObjectID (INT): ID of the DMS object for which similar objects are to be found.

MaxHits (INT): optional parameter that determines the maximum number of hits to be returned. If
this parameter is not passed, the maximum number of hits will be determined by registry entries.

Return:
(INT): 0 = job successful, otherwise error code
Return values:

Result (STRING): consists of an object ID, an object type, the ranking, and a hit ID (comma-
separated) for every found document (comma-separated).

Engines:

lu

See also:
vix.IsSearchForSimilarDMSObjectsEnabled

vtx.IsOntologySearchEnabled
Description:

This job indicates whether the full text engine supports the search for related words.
Parameter:

- none

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Result (BOOL): Is the search for similar words supported?

Engines:

All engines. But TRUE currently only for 'lu’.

enaio® Page 189

enaio® server-api enaio®

See also:

vix.OpenObjectQuery

vix.IsSearchForSimilarDMSObjectsEnabled
Description:

This job indicates whether the full text engine supports the search for DMS documents with similar
content.

Parameter:

- none

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Result (BOOL): Is the search for documents with similar content supported?
Engines:

All engines. But TRUE currently only for 'lu’.

See also:

vtx.GetSimilarDMSObjects

vix.GetMaxHits
Description:

This job returns the upper limit for the maximum number of hits for full text searches which has been
configured on the server. For all full text search jobs, it is recommended that the upper limit indicated
there does not exceed the server-side maximum.

Parameter:

- none

Return:

(INT): 0 = job successful, otherwise error code
Return values:

Result (INT): server-side configured upper limit for the maximum number of hits, which clients
should use when calling full text search jobs.

Engines:

All engines.

See also:

vix.OpenObjectQuery, vitx.GetSimilarDMSObijects, vix.OpenWordListQuery

vix.OpenObjectQuery

Description:

enaio® Page 190

enaio® server-api enaio®

This job queries an object and returns the result.
Note:

This ontological search (query parameter ONTOLOGY=1) is currently only supported if OSFTS is
used as the full-text engine, 'intrafind’ is configured there as the analyzer, and the OKM licence is
available. Using vtx.IsOntologySearchEnabled can determine whether the search is supported.

If OSFTS is used with 'intrafind,’ the LIS license is generally also required, otherwise the job call returns
the error code 0XC1DAOBDA.

Parameter:
Flags (INT): flags that are transferred to the full text engine
Query (STRING): search request in INI format. See example.

MessageLanguageld (INT): optional parameter for the ID of the language in which the possibly
returned message (see return value 'Message") is to be composed (Windows Language 1Ds, see for
example http://msdn.microsoft.com/en-us/library/ms776294.aspx; e.g. 7=German)

Return:

(INT): 0 = job successful, otherwise error code, e.g. OXC1DAOBDA, if OSFTS with "intrafind" is used
and the license LIS is missing.

Return values:

Result (STRING): consists of an object ID, an object type, the ranking, and a hit ID (comma-
separated) for every found document (comma-separated).

AlternativeQuerySuggestion (STRING): suggestion for alternative queries. This value is only returned
if OSFTS is used as the full-text engine and if this provides an alternative suggestion.

OntologyTerms (STRING): list of related search terms. Format: <Term>, <Degree of relation
(indicated in percent)>, ... For example: ‘flight,55;travel,43;vacation,12;". The return value is only
returned when ONTOLOGY =1 has been set in the query

Guid (STRING): Guid

Message (STRING): search result message
Engines:

All engines.

Example:

Only the first three lines are required when using Microsoft SQL Server.

[PAGEOO]

#OSTYPE#=262144

FULLTEXT=horse

ONTOLOGY=1

#OSACT#=1
FELDO=#0SPO0OS000# ; Author ;fieldl1;X;50;0;0
FELD1=#0SP0OS001#;source;field2;X;150;0;0
FELD2=#0SP0S002#; Text2;field3;X;50;0;0
[PDMSPParams]
EXPANSION_LEVEL_PROPERTY=4
FUZZY_SPELL_HALF_WORDS=FALSE
FUZZY_SPELL_THRESHOLD=0
MAX_FUZZY_SPELL_PROPERTY=15
MAX_REG_EXPR_PROPERTY=50
WARN_MAX_REG_EXPR_PROPERTY=FALSE

enaio® Page 191

http://msdn.microsoft.com/en-us/library/ms776294.aspx

enaio® server-api enaio®

WORD_EXPANSION_LIMIT_PROPERTY=20
LMP1_SET_LANG_PROPERTY=de
MAX_DOCS_PROPERTY=999
RwareQueryType=P
0SQueryType=0Object
OSSelectedTypes=current

See also:

vix.IsOntologySearchEnabled

vtx.OpenWordListQuery
Description:

This job queries a word list. At the moment, this job can only return a useful result when
RetrievalWare is used as full text software.

Parameter:

Flags (INT): flags that are transferred to the full text engine
Query (STRING): Query

Param (STRING): parameter for the search request
Return:

(INT): 0 = job successful, otherwise error code

Return values:

Result (STRING): consists of an object ID, an object type, the ranking, and a hit ID (comma-
separated) for every found document (comma-separated).

Guid (STRING): Guid
Engines:

rw

enaio® Page 192

enaio® server-api ‘ enaio®

Workflow Engine (Namespace wfm)

Jobs for processing and managing workflow processes and models are prepared here.

It is not possible to call workflow jobs from server-side workflow events through the ‘running context'.
This causes the server to crash.

Areas

§ Organizational structure

Workflow model

Workflow process and process step

Workflow form, event, and script

w w W wWw

Administration and history administration

§ Administration
§ History administration

§ Other jobs
§ Server-internal jobs

Organizational structure
wfm.ConfigUserAbsence

wfm.DeleteOrganization
wfm.GetAbsentUsers

wfm.GetOrganizationClasses

wfm.GetOrganizationObjects

wfm.GetOrganizations
wfm.GetSubstitutes

wfm.SaveOrganization

wfm.SetActiveOrganization
wfm.SetSubstitutes

w W W W W W W W W W

wfm.ConfigUserAbsence
Description:

This job defines one or more users as absent/present and informs all servers and enaio® editor-for-
workflow.

Parameter:

Organizationld (STRING): user organization
Users (BASE64): user list in XML format
Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 193

enaio® server-api enaio®

Example:

Structure of Users

<Users>
<User Id=""" Absent=""1"/>
<User ID="" Absent=""0"/>
</Users>

Note:
Detailed description of users
User: structure with the following contents
§ 1D (STRING): User ID
§ Absent (LONG): Flag
§ 0 =user is present
§ 1 =user is absent
See also:

wfm.GetOrganizations, wfm.GetOrganizationObjects, wfm.GetAbsentUsers

wfm.DeleteOrganisation
Description:

This job deletes an organization. All database entries regarding the organization are deleted from the
database (including organizational structure and workflow models)

Parameter:

Organizationld (STRING): organization ID
Return:

(INT): 0 = job successful, otherwise error code
See also:

wfm.GetOrganizations

wfm.GetAbsentUsers
Description:

This job returns all users of an organization which are set to "absent'.
Parameter:

Organizationld (STRING): organization ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Objectlds (String): GUIDs of the absent user objects, separated by commas
See also:

wfm.GetOrganizations, wfm.ConfigUserAbsence

enaio® Page 194

enaio® server-api enaio®

wfm.GetOrganisationClasses
Description:

This job returns information on the classes of an organization.

Parameter:

Organizationld (STRING): Organization ID

RequestType (LONG): flag specifies the search request, with the following parameters accordingly set
§ 0 =search all classes

8 1 =the search is performed for IDs in the parameter 'Classlds’

§ 2 =the search is performed for names in the parameter 'ClassName'
Classlds (STRING): comma-separated list of class IDs

ClassName (STRING): class name

Attributeld (STRING): not currently supported

RequestData (INT): specifies the results of the search request

8 1=onlydetermine index data of the classes (object 1D, name, class ID)
§ 3 =determine index data and class attributes

§ 5 =determine index data and class relations

§ 7 =determine index data, class attributes and class relations

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Classes (BASE64): information on the requested classes in XML format
Example:

Structure of Classes

<Classes>

<Class 1d=""10B9A20E90244BB9B701354C1AB84F8A"™ Name="'department'>
<Attributes/>

<ParentObjects>

<ParentObject 1d=""894CB679F2ED480A89107BF33A1F" Name="‘organization'/>
</ParentObjects>

<ChildClasses>

<ChildClass 1d=""12AA95D1D8244E6BB56C70A8D5CEE675" Name="role"/>
</ChildClasses>

</Class>

<Class 1d=""9AB24246BB9040A29FCD6015CF4F4BD9" Name="'person''>
<Attributes>

<Attribute 1d=""33D4AB4B39" Name="'surname' AttributeClassld="07F405D"">
<AttributeValue><![CDATA[1]></AttributeValue>

</Attribute>

</Attributes>

<ParentObjects>

<ParentObject ID="12AA95D1D8244E6BB56C70A8D5CEE675" Name=""role"/>
</ParentObjects>

<ChildClasses/>

</Class>

</Classes>

enaio® Page 195

enaio® server-api enaio®

Note:
Detailed description of Classes
8 Class: structure containing information on an organization class
§ ID (STRING): class ID
§ Name (STRING): class name
§ Attributes: structure containing information on an object attribute
§ ID (STRING): attribute ID
& Name (STRING): attribute name
§ AttributeClassld (STRING): attribute class ID of the attribute
§ AttributeValue: CDATA with attribute value, where applicable MIME encoded

§ ParentObject: structure containing information on an organization object, which is in the
organization tree directly above the current class.

§ ID (STRING): ID of the object
§ Name (STRING): object name

§ ChildClass: structure containing information on an organization object, which is in the
organization tree directly below the current class.

§ ID (STRING): ID of the object
§ Name (STRING): object name
See also:

wfm.GetOrganizations, wfm.GetOrganizationObjects

wfm.GetOrganisationObjects

Description:

This job returns information on the objects of an organization.

Parameter:

Organizationld (STRING): Organization ID

RequestType (INT): flag specifies the search request, with the following parameters accordingly set
0 =find all objects

1 = the search is performed for IDs in the parameter 'Objectlds’

2 =the search is performed for names in the parameter 'ObjectName’

3 = the search is performed for IDs in the parameter 'Classlds'

4 = the search is performed for names in the parameter 'ClassName'

5 = the search is performed for predecessor objects in the parameter 'ObjectName’
6 = the search is performed for successor objects in the parameter 'ObjectName’

7 = the search is performed for predecessor objects in the parameter 'ClassName'

w W W W W W W W W

8 = the search is performed for successor objects in the parameter 'ClassName'
Objectlds (STRING): comma-separated list of object IDs

ObjectName (STRING): Object name
enaio® Page 196

enaio® server-api

Classlds (STRING): comma-separated list of class IDs

ClassName (STRING): class name

Attributeld (STRING): not currently supported

AttributeValue (STRING): not currently supported

RequestData (INT): specifies the results of the search request

8 1 =only determine index data of the objects (object ID, name, class I1D)
§ 3 =determine index data and object attributes

8 5 =determine index data, predecessor and successor objects

§ 7 =determine index data, object attributes, predecessor and successor objects
Return:

(INT): 0 = job successful, otherwise error code

Return values:

Objects (BASE64): information on the requested objects in XML format
Example:

Structure of Objects

enaio®

<Objects>

<Object Id="" Name=""" Classld=""">
<Attributes>

<Attribute Id="" Name=""" AttributeClassld=""">
<AttributeValue><!I[CDATA[1]</AttributeValue>
</Attribute>

<Attribute Id=""" Name=""" AttributeClassld=""">
<AttributeValue><![CDATA[]]</AttributeValue>
</Attribute>

</Attributes>

<ParentObjects>

<ParentObjects Id=""" Name=""" Classld=""">
</ParentObjects>

<ChildObjects>

<ChildObjects Id="" Name=""" Classld=""">
</ChildObjects>

</Object>

</Objects>

Note:
Detailed description of objects
§ Object: structure containing information on an organization object
§ ID (STRING): ID of the object
§ Name (STRING): object name
§ Classld (STRING): class ID of the object
§ Attributes: structure containing information on an object attribute
§ ID (STRING): attribute ID
§ Name (STRING): attribute name
§ AttributeClassld (STRING): attribute class ID of the attribute
§ AttributeValue: CDATA with attribute value, where applicable MIME encoded

enaio® Page 197

enaio® server-api enaio®

8§ ParentObiject: structure containing information on an organization object, which is in the
organizational tree directly above the current object.

& ID (STRING): ID of the object
§ Name (STRING): object name
§ Classld (STRING): class ID of the object

8 ChildObject: structure containing information on an organization object, which is in the
organization tree directly below the current object.

§ ID (STRING): ID of the object

§ Name (STRING): object name

§ Classld (STRING): class ID of the object
See also:

wfm.GetOrganizations, wfm.GetOrganizationClasses

wfm.GetOrganisations
Description:

This job returns all defined organizations and indicates which organization is enabled. Only one
organization at a time can be enabled in the enaio® editor-for-workflow.

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Organizations (BASE64): information on all available organizations in XML format
Example:

Structure of Organisations

<Organizations>

<Organization Id="" Name=""" Active="0"/>
<Organization Id="" Name=""" Active=""1"/>
</Organizations>

Note:

Detailed description of Organisations

Organization: structure containing information on an organization

8 ID (STRING): Organization ID

8 Name (STRING): organization name

8 Active (INT): indicates whether the organization is enabled (1) or not (0)

wfm.GetSubstitutes
Description:

This job returns a substitute for any number of users or roles.
Parameter:

Organizationld (STRING): Organization ID

enaio® Page 198

enaio® server-api enaio®
Userlds (STRING): comma-separated list of 1Ds of users/roles for which substitute information is
requested

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Substitutes (BASE64): requested substitute information in XML format

Example:

Structure of Substitutes

Example:

Structure of Substitutes

<?xml version="1_.0" encoding="UTF-8" standalone="yes"?>

<Substitutes>

<Object ID="BB4FF62D3FE24DD790DE342585917A36"">

<Substitute ID="8CD236F862644DAD904CD8C228EF4F23" Name=""LEHMANN" Absent="1"
UserGUID=""4FEEDE694EB94E7E9C4A847FC32D10E4" Login="Lehmann*/>

</Object>

</Substitutes>

Note:

Detailed description of Substitutes

8 D (String): object ID of the user

8 Substitute: structure which contains all substitute assignments for a specific user/roles
§ ID (STRING): object ID of the substitute for user/role

§ Name (STRING): login name of the substitute
§ Absent (INT): 1 = user is absent, 0 = otherwise
§ UserGUID (STRING): user GUID from the user table
§ Login (STRING): user login from the user table
See also:

wfm.GetOrganizations, wfm.GetOrganizationObjects, wfm.SetSubstitutes

wfm.GetUserSubstitutes
Description:

This job identifies all users for whom the querying user is covering
Parameter:

Organizationld (STRING): Organization ID

Userld (STRING): user ID for whom the information is requested
Return:

(INT): 0 = job successful, otherwise error code

Return values:

Objects (BASE64): requested information in XML format

enaio® Page 199

enaio® server-api

Example:
Structure of Objects
Example:

Structure of Objects

enaio®

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Objects>

<Object ID="BB4FF62D3FE24DD790DE342585917A36"">

<Substitute ID=""8CD236F862644DAD904CD8C228EF4F23" Name=""LEHMANN
UserGUID=""4FEEDE694EB94E7E9C4A847FC32D10E4" Login=""Lehmann"/>
</Object>

</Objects>

" Absent=""1"

Note:
Detailed description of objects
8 1d (String): object ID of the user
8 Object, structure that contains all users to be substituted
§ ID (STRING): object ID of the substitute for user/role

§ Name (STRING): login name of the substitute
§ Absent (INT): 1 = user is absent, 0 = otherwise
§ UserGUID (STRING): user GUID from the user table
§ Login (STRING): user login from the user table
See also:

wfm.GetOrganizations, wfm.GetOrganizationObjects, wfm.SetSubstitutes

wfm.SaveOrganisation
Description:

This job saves an organization and notifies all affected clients.
Parameter:

Organizationld (STRING): organization ID

Return:

(INT): 0 = job successful, otherwise error code

wfm.SetActiveOrganisation
Description:

This job enables the specified organization.
Parameter:

Organizationld (STRING): organization ID
Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 200

enaio® server-api enaio®

wfm.SetSubstitutes
Description:

This job sets a substitute for any number of users or roles.
Parameter:

Organizationld (STRING): Organization ID

Substitutes (BASE64): user substitute assignments in XML format
Return:

(INT): 0 = job successful, otherwise error code

Example:

Structure of Substitutes

<Substitutes>

<Substitute ID="12345678901234567890123456789010"">
<Substitutelds>789012345678901A,123456778901B</Substitutelds>
</Substitute>

<Substitute ID=""12345678901234567890123456789011"">
<Substitutelds>123456789012345,123452345678901C</Substitutelds>
</Substitute>

</Substitutes>

Note:

Detailed description of Substitutes

Substitute: structure containing all substitute assignments for a specific user

8 ID (STRING): Obijectld of the user/role

8 comma-separated list of object IDs of all substitutes for the user/role can be empty
See also:

wfm.GetOrganizations, wfm.GetOrganizationObjects, wfm.GetSubstitutes

workflow model
wfm.ChangeWorkflowState
wfm.CopyWorkflow
wfm.DeleteWorkflow
wfm.GetWorkflow
wfm.GetWorkflowData
wfm.GetWorkflowlnfo
wfm.GetWorkflowL ist
wfm.GetWorkflowListByFamily
wfm.StoreWorkflow
wfm.ValidateWorkflow

w W W W W W W W W W

wfm.ChangeWorkflowState
Description:

enaio® Page 201

enaio® server-api enaio®

This job changes/sets the status of a workflow model.

Parameter:

Organizationld (STRING): ID of the organization assigned to the workflow
Workflowld (STRING): ID of the workflow model

Userld (STRING): User ID

State (LONG): new status of the workflow model to be set

Return:

(INT): 0 = job successful, otherwise error code

Return values:

State (LONG): new status of the workflow model

Note:

Status of the workflow model

1 = The model is in use, i.e. new processes can be started with it.
2 = The model is locked for editing.

3 =The model is still being edited, but is not locked.

4 = The model is available for testing.

5 = The model has been deleted, but is still contained in the database.

w W W W W W

6 = The model is available, but is not yet in use. New processes cannot be started with this model,
active ones are being terminated.

See also:
wfm.ValidateWorkflow

wfm.CopyWorkflow
Description:

This job creates a copy of a workflow model including workflow forms and events.
Parameter:

Userld (STRING): ID of the executing user

SourceOrganizationld (STRING): ID of the organization to be copied from
SourceWorkflowld (STRING): ID of the workflow model to be copied
TargetOrganizationld (STRING): ID of the organization to be copied to
TargetFamilyld (STRING): ID of the workflow family to be copied to
TargetWorkflowName (STRING): name of the new workflow

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Workflowld (STRING): ID of the new workflow model

enaio® Page 202

enaio® server-api enaio®

wfm.DeleteWorkflow
Description:

This job deletes a workflow model and the corresponding history entries from the database and notifies
all other servers.

Parameter:

Organizationld (STRING): ID of the organization of the workflow model
Workflowld (STRING): ID of the workflow model

Return:

(INT): 0 = job successful, otherwise error code

wfm.GetWorkflow
Description:

This job returns a workflow model from the server.
Parameter:
Workflowld (STRING): ID of the workflow model

Processld (STRING): ID of the process (the process has to be active); can be optionally used to replace
the parameters 'Familyld' and ‘Workflowld'; only valid for Action = 1 valid

Organizationld (STRING): ID of the organization of the workflow model
Userld (STRING): ID of the DRT user

Familyld (STRING): ID of the workflow family of the workflow model
Action (INT): action to be executed

§ 1 = the workflow model is queried for reading

§ 2 = the workflow model will be edited

§ 3 =an empty workflow model is queried

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Newld (STRING): new ID of the requested workflow, if created (see input parameter 'Action")
State (INT): status of the model

1 = The model is in use, i.e. new processes can be started with it.

2 = The model is locked for editing.

3 = The model is still being edited, but is not locked.

4 = The model is available for testing.

5 = The model has been deleted, but is still contained in the database.

w w W W W W

6 = The model is available, but is not yet in use. New processes cannot be started with this model,
active ones are being terminated.

Familyld (STRING): ID of the workflow's family

enaio® Page 203

enaio® server-api enaio®

CreationTime (INT): workflow creation time
Version (INT): workflow version

File list: name and path of the file containing the XML package with the description of the model in
XML format

See also:

wfm.StoreWorkflow

wfm.GetWorkflowData
Description:

This job returns status information of a workflow model for a workflow ID
Parameter:

Organizationld (STRING): ID of the organization of the workflow model
Workflowld (STRING): ID of the workflow model

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Workflowld (STRING): ID of the workflow model

WorkflowName (STRING): name of the workflow model

WorkflowState (INT): status of the workflow model

WorkflowCreator (STRING): ID of the workflow model creator
WorkflowCreationTime (INT): creation time of the workflow model
(STRING): version of the workflow model

WorkflowLockld (STRING): ID of the user who has locked the workflow model
WorkflowLockName (STRING): name of the user who has locked the workflow model
WorkflowLockTime (INT): lock time of the workflow model
WorkflowDescription (STRING): short description of the workflow model
Workflowlconld (INT): icon ID of the workflow model

Note:

Status of the workflow model

1 = The model is in use, i.e. new processes can be started with it.

2 =The model is locked for editing.

3 =The model is still being edited, but is not locked.

4 = The model is available for testing.

5 = The model has been deleted, but is still contained in the database.

w wu W W W W

6 = The model is available, but is not yet in use. New processes cannot be started with this model,
active ones are being terminated.

enaio® Page 204

enaio® server-api enaio®

wfm.GetWorkflowInfo
Description:

This job returns the input parameters (workflow variables) of the the specified workflow family for the
active workflow model (status = 1).

Parameter:

Organizationld (STRING): ID of the organization of the workflow model
Familyld (STRING): ID of the family of the active workflow model
Return:

(INT): 0 = job successful, otherwise error code

Return values:

InputParams (BASE64): input parameters of the model in XML format
Example:

Structure of InputParams

<InputParams>
<InputParam Id=""" Name="""><I[CDATA[]1]></InputParam>
<InputParam Id=""" Name="""><I[CDATA[]1]></InputParam>
</InputParams>

Note:

Detailed description of InputParams

§ InputParam
§ ID (STRING): ID of the input parameter
§ Name (STRING): Name of the input parameter
§ CDATA: structure of the input parameter

See also:

wfm.GetWorkflowL st

wfm.GetWorkflowList
Description:

This job returns a list of all startable workflows for the specified user.
Parameter:

Organizationld (STRING): Organization ID

Userld (STRING): User ID

Flags (INT): indication parameter, currently only value 48 is valid
ClientTypeld (STRING): ID of the used client type

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Workflows (BASE64) list containing data of the queried workflows in XML format
enaio® Page 205

enaio® server-api

Example:

Structure of Workflows

enaio®

<Workflows>

<Workflow Familyld=""" ModelName =""" Name=""' Id=""" Description=""" lconld=""/>
<Workflow Familyld=""" ModelName=""" Name='""" Id="""" Description=""" lconld="""/>
</Workflows>

Note:

Detailed description of Workflows
8 Workflow

§ Familyld (STRING): ID of the workflow family of the workflow

§ ID (STRING): workflow ID

§ Name (STRING): name of the workflow (instance name)

§ Description (STRING): workflow model description

§ Iconld (INT): icon ID of the workflow model

§ ModelName (STRING): name of the workflow model

See also:

wfm.GetOrganizations, wfm.GetOrganizationObjects, wfm.CreateProcesslnstance

wfm.GetWorkflowListByFamily
Description:

This job returns all contained workflows for a workflow family. Within a workflow family only one

workflow can have the status = 1.

Parameter:

Organizationld (STRING): Organization ID
Familyld (STRING): ID of the workflow family
Return:

(INT): 0 = job successful, otherwise error code
Return values:

Workflows (BASE64): Workflow list in XML format
Example:

Structure of Workflows

<Workflows>

<Workflow Id=""" Name=""' State="" Creator=""" CreationTime=""
Version=""" Lockld=""" LockName =""" LockTime=""" Description="""
lIconld="""/>

<Workflow Id=""" Name=""" State=""' Creator=""" CreationTime=""
Version=""" Lockld=""" LockName ="'" LockTime=""" Description=""
lIconld="""/>

</Workflows>

Note:

Detailed description of Workflows

enaio® Page 206

enaio® server-api enaio®

Workflow: structure containing information on a workflow

§ ID (STRING): workflow ID

§ Name (STRING): name

§ State (INT): workflows status

1 = The model is in use, i.e. new processes can be started with it.
2 = The model is locked for editing.

3 = The model is still being edited, but is not locked.

4 = The model is available for testing.

5 = The model has been deleted, but is still contained in the database.

w W W W W W

6 = The model is available, but is not yet in use. New processes cannot be started with this
model, active ones are being terminated.

Creator (STRING): Creator

CreationTime (INT): Creation time

Version: workflow version number

Lockld (STRING): ID of the user who has locked the workflow
LockName (STRING): Name of the user who has locked the workflow
LockTime (INT): lock time

Description (STRING):workflow description

w W W W W W W W

Iconld (INT): icon ID of the workflow model

wfm.StoreWorkflow
Description:

This job changes/saves a workflow model.
Parameter:

Userld (STRING): User ID

Workflowld (STRING): ID of the workflow model
Organizationld (STRING): Organization ID
Familyld (STRING): ID of the workflow family

Flags (INT): 1=internal 2=external (the model is imported from an external source, a new ID is created
for it)

Input file: path and name of the file containing workflow information in XML format
Return:

(INT): 0 = job successful, otherwise error code

Return values:

Workflowld (STRING): workflow ID

Name (STRING): workflow name

State (INT): workflows status

enaio® Page 207

enaio® server-api enaio®

Creatorld (STRING): ID of the workflow creator

CreationTime (INT): workflow creation time

Version (STRING): workflow version

Lockld (STRING): ID of the user who has locked the workflow
LockName (STRING): name of the user who has locked the workflow
LockTime (INT): time of locking of the workflow

Description (STRING): short description of the workflow

Iconld (INT): icon ID of the workflow model

wfm.ValidateWorkflow
Description:

This job checks whether a workflow model is allowed.

Parameter:

Organizationld (STRING): ID of the organization

Input file: path and name of the file with description of the workflow model in XML format
Return:

(INT): 0 = job successful, otherwise error code

Return values:

Valid (INT): flag which indicates whether the model is permissible (1=yes, 2=no)
ErrorCount (INT): number of errors found in the model

WarningCount (INT): number of warnings related to the model

Errors (BASE64): information on the found errors in XML format

Warnings (BASE64): information on the warnings in XML format

Example:

Structure of Errors

<Errors>

<SchemaVal idationError>SchemaVal idationError!</SchemavalidationError>
<MissingTypeDeclRecordMembers>

<MissingTypeDeclRecordMember TypeDeclld=""" TypeDeclIName="TestList"/>
<MissingTypeDeclRecordMember TypeDeclld=""" TypeDeclName="RecFu'/>
</MissingTypeDeclRecordMembers>

<MissingVariableRecordMembers>

<MissingVariableRecordMember Variableld=""" VariableName="" TestListl"/>
</MissingVariableRecordMembers>

<MissingTypeDeclarations>

<MissingTypeDeclaration 1d="12346798134567891345678900001"">
<ReferencingDataFields>

<ReferencingDataField 1d="1234671345678913456789001" Name="abc"'/>
<ReferencingDataField 1d="126789134567890000" Name="'xyz'/>
</ReferencingDataFields>

<ReferencingTypeDeclarations>

<ReferencingTypeDeclaration 1d=""123467981345" Name="" TestList"/>
</ReferencingTypeDeclarations>

</MissingTypeDeclaration>

enaio® Page 208

enaio® server-api enaio®

<MissingTypeDeclaration 1d="12346798134567891345678900002"">
<ReferencingTypeDeclarations>

<ReferencingTypeDeclaration Id=""" Name="recBla'"'/>
</ReferencingTypeDeclarations>

</MissingTypeDeclaration>

</MissingTypeDeclarations>

<MissingActivityParticipants>

<MissingActivityParticipant 1d="12346798134567891345678900006" >
<ReferencingActivities>

<ReferencingActivity ld="" Name="'stepl'/>

<ReferencingActivity Id="" Name='"'step2'/>

</ReferencingActivities>

</MissingActivityParticipant>

<MissingActivityParticipant 1d="12346798134567891345678900007"">
<ReferencingActivities>

<ReferencingActivity Id="" Name="'stepl'/>

</ReferencingActivities>

</MissingActivityParticipant>

</MissingActivityParticipants>

<NoParticipantsinStartActivity/>

<MissingTool lds>

<MissingToolld Activityld="" ActivityName="stepLoopl"/>

<MissingToolld Activityld="" ActivityName="'steplLoop2"/>

</MissingTool lds>

<MissingApplicationMasks>

<MissingApplicationMask Applicationld="" ApplicationName="Application
Stepl" Maskld="12346798134567891345678900008" />
</MissingApplicationMasks>

<MissingApplicationMasklds>

<MissingApplicationMaskld Activityld="" ActivityName="Act Stepl" Applicationld=""
ApplicationName="App Step 1'"/>

</MissingApplicationMasklds>

<MissingActivityApplications>

<MissingActivityApplication Activityld=""" ActivityName="step2"
Applicationld="12346798134567891345678900010""/>
</MissingActivityApplications>

<InvalidApplicationMaskFieldlds>

<InvalidApplicationMaskFieldld MaskFieldld="123" Applicationld="""
ApplicationName="AppTest'/>

</InvalidApplicationMaskFieldlds>

<MissingActivityVariables>

<MissingActivityVariable Variableld="12346798134567891345678900012"">
<ReferencingActivities>

<ReferencingActivity Id="" Name="'step2'/>

</ReferencingActivities>

</MissingActivityVariable>

<MissingActivityVariable Variableld="12346798134567891345678900013"">
<ReferencingActivities>

<ReferencingActivity Id="" Name='"'step2'/>

</ReferencingActivities>

</MissingActivityVariable>

</MissingActivityVariables>

<Inval idParameterListCounts>

<InvalidParameterListCount Activityld="" ActivityName="stepl"
Applicationld=""" ApplicationName="" App Stepl"/>
<InvalidParameterListCount Activityld=""" ActivityName="step3" Applicationld=
ApplicationName="App Step3"/>

</InvalidParameterListCounts>

<ParamWithoutVariableActivities>

<ParamWithoutVariableActivity Activityld=""" ActivityName="stepl" Applicationld=""
ApplicationName="App Stepl"/>/>

<ParamWithoutVariableActivity Activityld=""" ActivityName="step2 Applicationld=
ApplicationName="App Step2"/>"/>

enaio® Page 209

enaio® server-api enaio®

</ParamWithoutVariableActivities>

<MissingTakeOverActivities>

<MissingTakeOverActivity Activityld="12346798134567891345678900014"">
<ReferencingActivities>

<ReferencingActivity ld="stepl"™ Name="stepl"/>
</ReferencingActivities>

</MissingTakeOverActivity>

<MissingTakeOverActivity Activityld="12346798134567891345678900015"">
<ReferencingActivities>

<ReferencingActivity ld="step2" Name="'step2"/>
</ReferencingActivities>

</MissingTakeOverActivity>

</MissingTakeOverActivities>

<MissingTakeOverVariables>

<MissingTakeOverVariable Variableld="12346798134567891345678900016"">
<ReferencingActivities>

<ReferencingActivity Id="" Name="'stepl'/>

</ReferencingActivities>

</MissingTakeOverVariable>

</MissingTakeOverVariables>

<MissingFromActivities>

<MissingFromActivity FromActivityld="12346798134567891345678900017"
Transitionld="12346798134567891345678900018" />

<MissingFromActivity FromActivityld="12346798134567891345678900019"
Transitionld="12346798134567891345678900020" />
</MissingFromActivities>

<MissingToActivities>

<MissingToActivity ToActivityld="12346798134567891345678900021"
Transitionld="12346798134567891345678900022" />
</MissingToActivities>

<RedundantTransitions>

<RedundantTransition FromActivityld="12346798134567891345678900021"
FromActivityName="stepX" ToActivityld="12346798134567891345678900021""
ToActivityName=""stepY" Transitionld="12346798134567891345678900021""/>
</RedundantTransitions>

<InvalidFromLoopTransitions>

<InvalidFromLoopTransition

FromActivityld="12346798891345678900021" FromActivityName=""stepX"
Transitionld="1234679891345678900021" />
</InvalidFromLoopTransitions>

<InvalidToLoopTransitions>

<InvalidToLoopTransition ToActivityld="12346798134567891345678900021"
ToActivityName=""'stepX" Transitionld="12346798134567891345678900021"/>
</InvalidToLoopTransitions>

<InvalidFromOrToLoops>

<InvalidFromOrToLoop LoopActivityld="12346798134567891345678900021"
LoopActivityName=""1oopX"/>

</InvalidFromOrToLoops>

<CycleActivities>

<CycleActivity 1d="12346798134567891345678900021" Name="'step58"/>
<CycleActivity 1d=""12346798134567891345678900021" Name="'step42'/>
</CycleActivities>

<InvalidLoopTransitions>

<InvalidLoopTransition Transitionld="12346798134567891345678900021"
FromActivityld="12346798134567891345678900021" FromActivityName=""stepX"
ToActivityld="12346798134567891345678900021" ToActivityName="stepY'/>
</InvalidLoopTransitions>

<InvalidToLoopNumActivities>

<InvalidToLoopNumActivity 1d="12367891345678900021" Name="'step56"'/>
<InvalidToLoopNumActivity 1d=""81345678913456789001" Name="'step57''/>
</InvalidToLoopNumActivities>

<InvalidFromLoopNumActivities>

<InvalidFromLoopNumActivity 1d="1234678900021" Name="'step59'/>
<InvalidFromLoopNumActivity 1d=""3467981345678" Name="'step60'/>

enaio® Page 210

enaio® server-api enaio®

</InvalidFromLoopNumActivities>

<MissingLoopConditionActivities>

<MissingLoopConditionActivity 1d=""12891345678900021" Name="'step61"/>
</MissingLoopConditionActivities>

<NoTerminationActivities>

<NoTerminationActivity Id=""" Name="stepBla''/>

<NoTerminationActivity Id="" Name='"stepFoo'/>
</NoTerminationActivities>

<NoLoopTerminationActivities>

<NoLoopTerminationActivity Id=""" Name="stepLoopl'/>
<NoLoopTerminationActivity Id=""" Name='"stepLoop2'/>
</NoLoopTerminationActivities>

<MissingDefActlds>

<MissingDefActld Id=""" Name="'steplLoopl'/>

<MissingDefActld Id=""" Name="'stepLoop2'/>

</MissingDefActlds>

<AllClientTypesActivities>

<AllClientTypesActivitiy Activityld="" ActivityName="XX" Applicationld="""
ApplicationName="x1"/>

<AllClientTypesActivitiy Activityld="" ActivityName="YY" Applicationld="""
ApplicationName="y1"/>

</AllClientTypesActivities>

<AmbiguousActAppClientTypes>

<AmbiguousActAppClientType Activityld="" ActivityName="ABC" ClientTypeld="""
ClientTypeName="CTX"/>

<AmbiguousActAppClientType Activityld="" ActivityName="DEF" ClientTypeld="""
ClientTypeName="CTY"'/>

</AmbiguousActAppClientTypes>

<ActApplnvalidClientTypes>

<ActApplnvalidClientType Activityld="" ActivityName="AAB" Applicationld=""
ApplicationName="v1"/>

<ActApplnvalidClientType Activityld="" ActivityName="BBX" Applicationld="""
ApplicationName=""w2"/>

</ActApplnvalidClientTypes>

<ActEvtAlIClientTypes>

<ActEvtAlIClientType Activityld="" ActivityName="ABC" EventTypeld="100"
EventTypeName=""BeforeBlaEvent"/>

<ActEvtAlIClientType Activityld="" ActivityName="DEF" EventTypeld="100"
EventTypeName=""AfterFuEvent'/>

</ActEvtAlIClientTypes>

<AmbiguousActEvtClientTypes>

<AmbiguousActEvtClientType Activityld="" ActivityName="ABCDE" EventTypeld=""100"
EventTypeName=""Beforel23Event' ClientTypeld="" ClientTypeName="CTX11"/>
<AmbiguousActEvtClientType Activityld="" ActivityName="DEFGH" EventTypeld="100"
EventTypeName=""After456Event™ ClientTypeld="" ClientTypeName="CTY22"/>
</AmbiguousActEvtClientTypes>

<AmbiguousGlobalEvtClientTypes>

<AmbiguousGlobalEvtClientType ClientTypeld="" ClientTypeName="CT89"/>
<AmbiguousGlobalEvtClientType ClientTypeld="" ClientTypeName="CT90"/>
</AmbiguousGlobalEvtClientTypes>

<NoProcessStartClientType/>

<InvalidModParamVarlds>

<InvalidModParamVarld Varld="12891345678900021"">

<Inval idModParamvarlds/>

<AdhocActWithoutDefaultSubActs>

<AdhocActWithoutDefaul tSubAct Id=""" Name='"AdhocActWithoutDefaultSubAct 1'/>
<AdhocActWithoutDefaultSubAct Id=""" Name="AdhocActWithoutDefaultSubAct 2"/>
</AdhocActWithoutDefaul tSubActs>

<AdhocActWithUnknownDefaul tSubActs>

<AdhocActWithUnknownDefaultSubAct Id=""" Name=""AdhocActWithUnknownDefaultSubAct 1'/>
<AdhocActWithUnknownDefaultSubAct Id=""" Name=""AdhocActWithUnknownDefaultSubAct 2"/>
</AdhocActWithUnknownDefaultSubActs>

<AdhocActDefaul tActlsNotAdhocSubActs>

enaio® Page 211

enaio® server-api enaio®

<AdhocActDefaul tActlsNotAdhocSubAct Id=""" Name=""AdhocActDefaultActlsNotAdhocSubAct
1"/>

<AdhocActDefaultActlsNotAdhocSubAct Id=""" Name=""AdhocActDefaultActlsNotAdhocSubAct
2"/>

</AdhocActDefaul tActlsNotAdhocSubActs>

<AdhocActDefaul tActlsNotWorkitems>

<AdhocActDefaul tActlsNotWorkitem Id=""" Name=""AdhocActDefaultActlsNotWorkitem 1"/>
<AdhocActDefaultActlsNotWorkitem Id=""" Name=""AdhocActDefaultActlsNotWorkitem 2"/>
</AdhocActDefaul tActlsNotWorkitems>

</Errors>

Note:
Detailed description of Errors
§ SchemaValidationError: schema validation error message

§ MissingTypeDeclRecordMember: structure containing type declaration which contains a record
without a member

§ TypeDeclld (STRING): ID of the type declaration
§ TypeDecIName (STRING): name of the type declaration

8 MissingVariableRecordMember: structure containing a variable which contains a record without a
member

§ Variableld (STRING): variable 1D
§ VariableName (STRING): name of the variables
§ MissingTypeDeclarations
§ MissingTypeDeclaration: structure that contains used but not defined type declaration
§ ID (STRING): ID used to reference missing type declaration
§ ReferencingDataFields

§ ReferencingDataField: structure containing a DataField (workflow variable), which contains a
non-defined type declaration

§ ID (STRING): ID of the data field
§ Name (STRING): name of the data field
§ ReferencingTypeDeclarations

§ ReferencingTypeDeclaration: structure containing a type declaration, which uses an undefined
type declaration

§ ID (STRING): ID of the type declaration
§ Name (STRING): name of the type declaration
§ MissingActivityParticipants

§ MissingActivityParticipant: structure containing an activity participant who is not a workflow
participant

§ ID (STRING): ID used to reference missing workflow participants
§ ReferencingActivities
§ ReferencingActivity: structure containing an activity which references a parent structure
§ ID (STRING): Activity ID
§ Name (STRING): Activity name

enaio® Page 212

enaio® server-api enaio®

8 NoParticipantsinStartActivity: tag is available, if no participants have been assigned to the start
activity

8 MissingToollds
§ MissingToolld: structure containing an activity which is missing the Tool 1D
§ Activityld (STRING): Activity type
§ ActivityName (STRING): Activity name
8 MissingApplicationMasks

§ MissingApplicationMask: structure containing an application which references a non-existent
mask

§ Applicationld (STRING): application ID

§ ApplicationName (STRING): application name

§ Maskld (STRING): ID used to reference non-existent mask
§ MissingApplicationMasklds

§ MissingApplicationMaskld: structure containing an activity and an assigned application which
has not been assigned a mask

§ Activityld (STRING): Activity type

§ ActivityName (STRING): Activity name

§ Applicationld (STRING): application ID

§ ApplicationName (STRING): Application name
§ MissingActivityApplications

§ MissingActivityApplication: structure containing an activity which references a non-existent
application

§ Activityld (STRING): Activity type
§ ActivityName (STRING): Activity name
§ Applicationld (STRING): ID used to reference a non-existent application
§ InvalidApplicationMaskFieldld: structure contains invalid reference to mask fields
§ MaskFieldld (STRING): ID of the missing mask field
§ Applicationld (STRING): application ID
§ ApplicationName (STRING): Application name
§ MuissingActivityVariables

§ MissingActivityVariable: structure containing an activity variable, which does not exist in the
workflow as data field (workflow variable)

§ Variableld (STRING): ID used to reference a non-existent workflow variable
§ ReferencingActivityApplications

§ ReferencingActivityApplication: structure containing an activity application assignment
for which the problem exists

§ Activityld (STRING): Activity type
§ ActivityName (STRING): Activity name
§ Applicationld (STRING): application ID

enaio® Page 213

enaio® server-api enaio®

§ ApplicationName (STRING): Application name
§ InvalidParameterListCounts

§ InvalidParameterListCount: structure containing an activity with an associated application with
a disproportionate number of parameters

Activityld (STRING): Activity type
ActivityName (STRING): Activity name
Applicationld (STRING): application ID

§ ApplicationName (STRING): Application name
§ ParamWithoutVariableActivities

§ ParamWithoutVariableActivity: structure containing an activity, which contains application
parameters without a variable assignment

Activityld (STRING): Activity type
ActivityName (STRING): Activity name
Applicationld (STRING): application 1D
ApplicationName (STRING): Application name

w W W

w W W W

§ MissingTakeOverActivities

§ MissingTakeOverActivity: structure containing an activity from which variables are to be taken
over but where this activity does not exist in the workflow

§ Activityld (STRING): ID which references a non-existent activity
§ MissingTakeOverVariables

§ MissingTakeOverVariable: structure containing a variable to be transferred to an activity but
this the variable (DataField) does not exist in the workflow

§ Variableld (STRING): ID used to reference a non-existent variable
§ MissingFromActivities

§ MissingFromActivity: structure containing a transition that uses a From Activity which is not
part of the workflow

§ FromActivityld (STRING): ID which references a non-existent activity
§ Transitionld (STRING): ID of the transition
§ MissingToActivities

§ MissingToActivity: structure containing a transition that uses a To Activity which is not part of
the workflow

§ ToActivityld (STRING): ID which references a non-existing activity
§ Transitionld (STRING): ID of the transition
§ RedundantTransitions

§ RedundantTransition: structure containing a transition that is "too much" because this
transition already exists with another ID

§ FromActivityld (STRING): ID of the FromActivity
§ FromActivityName (STRING): From activity name
§ ToActivityld (STRING): ID of the To activity

enaio® Page 214

enaio® server-api enaio®

§ ToActivityName (STRING): To activity name
§ Transitionld (STRING): ID of the transition
§ InvalidFromLoopTransitions

§ InvalidFromLoopTransition: structure containing a transition of the ‘FROM LOOP' type where
the From activity is not a loop activity

§ FromActivityld (STRING): ID of the FromActivity
§ FromActivityName (STRING): From activity name
§ Transitionld (STRING): ID of the transition

§ InvalidToLoopTransitions

§ InvalidToLoopTransition: structure containing a transition of the "'TO LOOP' type where the
To activity is not a loop activity

§ ToActivityld (STRING): ID of the To activity

§ ToActivityName (STRING): To activity name

§ Transitionld (STRING): ID of the transition
8 InvalidFromOrToLoops

§ InvalidFromOrToLoop: structure containing a loop activity with an invalid combination of
FROM and TO LOORP transitions

§ LoopActivityld (STRING): ID of the loop activity
§ LoopActivityName: (STRING) name of the loop activity
§ CycleActivities

§ CycleActivity: structure containing an activity in which a forbidden cycle merges in the a
workflow graph structure

§ ID (STRING): Activity ID
§ Name (STRING): Activity name
§ InvalidLoopTransitions

§ InvalidLoopTransition: structure containing a transition which leads from one loop to another,
i.e. an activity located in several partial graphs (loops)

§ FromActivityld (STRING): ID of the FromActivity
§ FromActivityName (STRING): From activity name
§ ToActivityld (STRING): ID of the To activity
§ ToActivityName (STRING): To activity name
§ Transitionld (STRING): ID of the transition

§ InvalidToLoopNumActivities

§ InvalidToLoopNumActivity: structure containing a loop activity that does not have precisely
one transition of the 'TO LOOP' type

§ 1D (STRING): ID of the loop activity
§ Name (STRING): name of the loop activity
§ InvalidFromLoopNumActivities

enaio® Page 215

enaio® server-api enaio®

§ InvalidFromLoopNumActivity: Structure containing a loop activity that does not have precisely
one transition of the 'FROM LOOP' type

§ ID (STRING): ID of the loop activity
§ Name (STRING): name of the loop activity
8 MissingLoopConditionActivities

§ MissingLoopConditionActivity: structure containing a loop activity for which no condition is
defined

§ ID (STRING): ID of the loop activity
§ Name (STRING): name of the loop activity
§ NoTerminationActivities

§ NoTerminationActivity: structure containing an activity from which the termination activity
cannot be reached

§ ID (STRING): Activity ID
§ Name (STRING): Activity name
§ NoLoopTerminationActivities

§ NoLoopTerminationActivity: structure containing an activity within a loop without any path
leading away, which leads back to the loop activity via a TOLOOP transition

§ ID (STRING): Activity ID
§ Name (STRING): Activity name
§ MissingDefActlds

§ MissingDefActld: structure containing an activity, which has not been assigned a default
activity for variable application

§ 1D (STRING): Activity ID
& Name (STRING): Activity name
§ AlIClientTypesActivities

§ AllIClientTypesActivity: structure containing an activity for which the client application
assignment is ambiguous (an assignment exists for all clients)

& Activityld (STRING): Activity type

§ ActivityName (STRING): Activity name

§ Applicationld (STRING): application ID

§ ApplicationName (STRING): Application name
§ AmbiguousActAppClientTypes

§ AmbiguousActAppClientType: structure containing an activity for which the client application
assignment is ambiguous

§ Activityld (STRING): Activity type

§ ActivityName (STRING): Activity name

§ ClientTypeld (STRING): ID of the client type

§ ClientTypeName (STRING): ClientType name
§ ActApplnvalidClientTypes

enaio® Page 216

enaio® server-api enaio®

§ ActApplnvalidClientType: structure containing an activity that contains an application
assignment for an invalid client

§ Activityld (STRING): Activity type

§ ActivityName (STRING): Activity name

§ Applicationld (STRING): application ID

§ ApplicationName (STRING): Application name
8 ActEvtAIIClientTypes

§ ActEvtAllClientType: structure containing an activity for which the client event assignment is
ambiguous (an assignment exists for all clients)

§ Activityld (STRING): Activity type

§ ActivityName (STRING): Activity name

§ EventTypeld (STRING): EventType ID

§ EventTypeName (STRING): EventType name
8 AmbiguousActEvtClientTypes

§ AmbiguousActEvtClientType: structure containing an activity for which the client event
assignment is ambiguous

§ Activityld (STRING): Activity type
ActivityName (STRING): Activity name
EventTypeld (STRING): ID of the client type
EventTypeName (STRING): ClientType name
ClientTypeld (STRING): ID of the client type

§ ClientTypeName (STRING): ClientType name
§ AmbiguousGlobalEvtClientTypes

w W wWw wWw

§ AmbiguousGlobalEvtClientType: structure containing a client type for which the assignment to
the global client event is ambiguous

§ ClientTypeld (STRING): ID of the client type
§ ClientTypeName (STRING): ClientType name
§ AdhocActWithoutDefaultSubActs

§ AdhocActWithoutDefaultSubAct: structure containing ad hoc activities to which no default activity
has been assigned

§ ID (STRING): ID of the AdhocActivity
§ Name (STRING): adhoc activity name
§ AdhocActWithUnknownDefaultSubActs

§ AdhocActWithUnknownDefaultSubAct: structure containing ad hoc activities whose default
activity does not exist in the model

§ ID (STRING): ID of the AdhocActivity
§ Name (STRING): adhoc activity name
§ AdhocActDefaultActlsNotAdhocSubActs

enaio® Page 217

enaio® server-api enaio®

§ AdhocActDefaultActlsNotAdhocSubAct: structure containing ad hoc activities whose default
activity is an invalid routing list activity for the respective ad hoc activity

ID (STRING): ID of the AdhocActivity
Name (STRING): adhoc activity name
AdhocActDefaultActlsNotWorkitems

AdhocActDefaultActlsNotWorkitem: structure containing ad hoc activities whose default activity is
not a process step

§ ID (STRING): ID of the AdhocActivity
8 Name (STRING): adhoc activity name

w W w w

Example:

Structure of Warnings

<Warnings>

<MissingWFParticipants>

<MissingWFParticipant 1d="1234670003" Name="Dilbert" IsResponsible="1"/>
<MissingWFParticipant 1d="1234679814" Name="Dogbert' IsResponsible="0"
IsFileResponsible="0">

<ReferencingActivities>

<ReferencingActivity Id="" Name="'stepl'/>

<ReferencingActivity Id="" Name="'step2'/>

</ReferencingActivities>

</MissingWFParticipant>

<MissingWFParticipant 1d="813456780005" Name='"Catbert" IsResponsible=""1">
<ReferencingActivities>

<ReferencingActivity Id="" Name="'stepl'/>

</ReferencingActivities>

</MissingWFParticipant>

</MissingWFParticipants>

<WFParticipantsWithoutASUser>

<WFParticipantWithoutASUser 1d="1234670003" Name="Dilbert"/>
<WFParticipantWithoutASUser 1d="1234679814" Name=''Dogbert'>
</WFParticipantsWithoutASUser>

<InvalidResponsiblelds>

<InvalidResponsibleld 1d="1234567..."/>

<InvalidResponsibleld 1d="2345678..."/>

</InvalidResponsiblelds>

<UnconnectedActivities>

<UnconnectedActivity 1d="12346798134567891345678900021" Name="'step7''/>
<UnconnectedActivity 1d="12346798134567891345678900021" Name="'step9''/>
</UnconnectedActivities>

<InvalidDefActlds>

<InvalidDefActld Id=""" Name="'stepLoop3'>

<ValidDefaultActivities>

<ValidDefaultActivity Id=""" Name="bla"/>

</ValidDefaultActivities>

</InvalidDefActld>

</InvalidDefActlds>

<NoOutVarslInLoopActConditions>

<NoOutVarsInLoopActCondition 1d="12346798134545678900021" Name=""loopX"/>
<NoOutVarsInLoopActCondition 1d="12346798134567891345671"" Name="loopY"/>
</NoOutVarslInLoopActConditions>

<NoOutVarsiInLoopActs>

<NoOutVarsInLoopAct 1d="12346798134567891345678900021" Name=""100pXA"/>
<NoOutVarslInLoopAct 1d=""12346798134567891345678900021" Name=""loopYB"'/>
</NoOutVarslnLoopActs>

<UnknownActAppClientTypes>

enaio® Page 218

enaio® server-api enaio®

<UnknownActAppClientType Activityld="" ActivityName=""AAA"
ClientTypeld="1234679813456789134567890000A" />

<UnknownActAppClientType Activityld="" ActivityName="BBB"
ClientTypeld="1234679813456789134567890000B" />

</UnknownActAppClientTypes>

<UnknownActEvtClientTypes>

<UnknownActEvtClientType Activityld="" ActivityName=""ABCDE" EventTypeld="100"
EventTypeName="Beforel23Event" ClientTypeld="ABC.."/>

<UnknownActEvtClientType Activityld=""" ActivityName="DEFGH" EventTypeld="100"
EventTypeName=""After456Event™ ClientTypeld="XYZ..""/>

</UnknownActEvtClientTypes>

<UnknownGlobalEvtClientTypes>

<UnknownGlobalEvtClientType ClientTypeld="123456...."/>

<UnknownGlobalEvtClientType ClientTypeld="1234567..."/>
</UnknownGlobalEvtClientTypes>

<AppToolsWithoutClientType>

<AppToolWithoutClientType Activityld="" ActivityName="Activity 42" Applicationld="""
ApplicationName="Application 43"/>

<AppToolWithoutClientType Activityld="" ActivityName="Activity 44" Applicationld="""
ApplicationName="Application 45"/>

<AppToolWithoutClientType Activityld="" ActivityName="Activity 46" Applicationld="""
ApplicationName="Application 47"/>

</AppToolsWithoutClientType>

<NoOrInvalidFileResponsibleld/>

<MasksWithoutFields>

<MaskWithoutFields Maskld="1234567" MaskName="Mask1'/>

<MasksWithoutFields/>

</Warnings>

Note:
Detailed description of Warnings
§ MissingWFParticipants

§ MissingWFParticipant: structure containing a workflow participant who does not exist in the
organization

§ ID (STRING): ID of the participant
§ Name (STRING): Name of the participant

§ IsResponsible (INT): indicates whether the participant is the person in charge of the
process (yes = 1, no = 0)

§ IsFileResponsible (INT): indicates whether the participant is in charge of the files (yes = 1,
no =0)

8 ReferencingActivities

§ ReferencingActivity: structure containing an activity to which users are assigned who do not
exist in the organization

§ 1D (STRING): Activity ID
& Name (STRING): Activity name
§ WFParticipantsWithoutASUser

§ WHFParticipantWithoutASUser: structure containing a user who is assigned to no or a hon-
existent AS user

§ ID (STRING): User ID
§ Name (STRING): User name
§ InvalidResponsiblelds

enaio® Page 219

enaio® server-api enaio®

§ InvalidResponsibleld: structure containing a workflow process owner who does not exist in the
list of participants

§ ID (STRING): process owner ID
8 UnconnectedActivities

§ UnconnectedActivity: structure containing an activity which cannot be reached from the
StartActivity

§ 1D (STRING): Activity ID
§ Name (STRING): Activity name

§ InvalidDefActlds: structure containing activities to which an invalid default activity has been
assigned for variable application

§ 1D (STRING): Activity ID
§& Name (STRING): Activity name

§ ValidDefaultActivities: structure containing activities that represent valid default activities for the
parent InvalidDefActld

§ ID (STRING): Activity ID
& Name (STRING): Activity name

§ NoOutVarsinLoopActConditions: structure with loop activities for which no variable application
has been defined

§ ID (STRING): Activity ID
§ Name (STRING): Activity name

§ UnknownActAppClientTypes: structure with activities for which an application assignment exists
for an unknown client

§ Activityld (STRING): Activity type
§ ActivityName (STRING): Activity name
§ ClientTypeld (STRING): ID of the client type

§ UnknownActEvtClientTypes: structure with activities for which an event assignment exists for an
unknown client

Activityld (STRING): Activity type
ActivityName (STRING): Activity name
EventTypeld (STRING): EventType ID
EventTypeName (STRING): EventType name
§ ClientTypeld (STRING): ID of the client type

§8 UnknownGlobalEvtClientTypes: structure with unknown client types created for a global client
event

§ ClientTypeld (STRING): ID of the client type

§ AppToolsWithoutClientType: structure with activities for which an application assignment exists
without client specification

§ Activityld (STRING): Activity type
§ ActivityName (STRING): Activity name

w W w wWw

enaio® Page 220

enaio® server-api enaio®

§ Applicationld (STRING): application ID
§ ApplicationName (STRING): Application name
§ MasksWithoutFields: structure with masks for which no mask fields exist
§ Maskld (STRING): ID of the mask
§ MaskName (STRING): mask name

Workflow Process and Process Step
wfm.CancelWorkltem

wfm.CompleteWorkltem

wfm.CreateProcessinstance

wfm.GetActivityPerformers
wfm.GetProcessList
wfm.GetProcessListByObject

wfm.GetProcessProtocol

wfm.GetProcessResponsibles

wfm.GetRunningActivities
wfm.GetWorkltem
wfm.GetWorkltemL st
wfm.GetWorkltemParams

wfm.SetActivityPerformers

wfm.SetProcessResponsibles

wfm.StartProcess
wfm.StartWorkltem

w W W W W W W W W W W W W W W W

wfm.CancelWorkltem
Description:

This job depersonalizes a process step. Afterwards a process step can again be seen by all participants
and it can again be assigned to a person.

Parameter:

Userld (STRING): ID of the user to date
Workltemld (STRING): instance ID of the activity
Organizationld (STRING): Organization ID
ClientTypeld (String): ID of the used client type
Return:

(INT): 0 = job successful, otherwise error code

wfm.CompleteWorkltem
Description:

enaio® Page 221

enaio® server-api enaio®
This job passes the editing data (variables, file) of a process step to the server and forwards the process
step corresponding to the 'ActionType' parameter.

Parameter:

Userld (STRING): User ID

Workltemld (STRING): instance of the activity

Parameters (BASE64): XML list of workflow variables

ActionType (STRING): flag that indicates what is to happen with the activity

§ SEND_BUTTON: Forward work item

8§ STOREONLY: changes are saved but the process step is not forwarded

SendTo (STRING): is no longer supported -> an empty string is passed

File (BASE64): contains documents of the workflow file in XML format

DocsDeleted (STRING): comma-separated list of document IDs, which are to be deleted from the WF
file

ClientTypeld (String): ID of the used client type

RoutingList (BASE64): routing list. This parameter is optional.
Return:

(INT): 0 = job successful, otherwise error code

Example:

Structure of Parameters

<Parameters>
<Parameter Name="WF_EDITOR_1" DataField=
""OFC5D03089E843F7B2D64F1CC2421418"><1[CData[Schulze]]></Parameter>

</Parameters>

Note:
Detailed description of Parameters
§ Parameter: Workflow variable
§ DataField (STRING): parameter ID
§ Name (STRING): parameter name
§ CDATA: data specifying the content of the parameter
Example:

Structure of File

<File>
<Docs>
<Doc 1d=""45" Type="23" Location="1" Workspace="0" New="1" Deleteable="1"
Moveable="2" UseActiveVariant="1"/>
</Docs>
</File>

Note:

Detailed description of File

enaio® Page 222

enaio® server-api enaio®

8 Docs: list of parameters (Doc) with the following structure
§ Id(STRING): ID of the document
§ Type (LONG): Document type

§ Location (INT): indicates whether the document is located in the SDREL (location ="1",
SDREL is the database table Root-Document Relation) or in the system tray (location = '2")

§ Workspace (INT): indicates whether the object is in the info area (0) or in the workspace (1)
§ New (INT): indicates whether the object was newly added to the file (New ='1")

§ Deleteable (INT): indicates whether it is allowed to delete the document from the file (0 = no, 1
= yes)
§ Moveable (INT): indicates whether the document can be moved in the file (0 = no, 1 = yes)

§ UseActiveVariant (INT): indicates whether the active variant is to be used for this document
object (0 = no, 1=yes)

Example:

Structure of RoutingList

<RoutingList 1d="3294B433BFF6454D9C861B86B5A8AD5D"
Processl1d=""BA16C21BB96D46D099E72070BCB644CC""
Activityld="3294B433BFF6454D9C861B86B5A8AD5D" Expandable=""1">

<Entries>

<Entry Nr="203" Expandable="1">

<ltem 1d=""99825B18A8334987935684FDA3D6A40D""
Activityld="6EE4490A48164A0FA6DC34A80099AF66" ActivityName="Create invoice"
ModelActivityName="Create invoice'" Remark=""" Timerld=""" TimerDuration="""
TimerDurationType="" Changeable="1" Deleteable="0">
<Objectlds></0Objectslds>

</ltem>

</Entry>

<Entry Nr="253" Expandable="1">

<ltem |d="E15594D692C14FDA9AFDESFAOA43F6E4"
Activityld="6EE4490A48164A0FAG6DC34A80099AF67" ActivityName="Approve invoice BL"
ModelActivityName="Approve invoice”™ Remark="" Timerld="" TimerDuration="""
TimerDurationType=""" Changeable="1" Deleteable="0">
<Objectlds></Objectslds>

</ltem>

<ltem Id=""C6DA9503CD874D69A9B703DOEO6AS2ES"
Activityld="6EE4490A48164A0FAG6DC34A80099AF67" ActivityName="Approve invoice GF"
ModelActivityName="Approve invoice"™ Remark=""" Timerld=""" TimerDuration="""
TimerDurationType=""" Changeable="1" Deleteable="0">
<Objectlds></Objectslds>

</ltem>

</Entry>

</Entries>

</RoutingList>

Note:

Detailed description of RoutingList

8 RoutingList: routing list with the following structure (or subsets of it)

ID (String): routing list ID. The value is set by the server and must not be changed.
Processld (String): Process ID

Activityld (String): activity 1D

w w W wWw

Expandable (Int): O: routing list cannot be expanded, 1: routing list can be expanded

enaio® Page 223

enaio® server-api enaio®

§

w W W W W W W W

Entries: the structure combines entries of the routing list. An entry consists of multiple
elements which can be executed simultaneously.

Entry: describes an entry in the routing list.

No (Int): for relative sorting of entries within the routing list. The absolute values do not have
any influence on the client.

Expandable (Int): 0: entry cannot be expanded, 1: entry can be expanded

Item: describes an element of the routing list. This can be an activity, an executing person or a
deadline.

ID (STRING): for identification This ID must not be changed and must be identically sent for
all jobs. If an item was created by the client, the ID must be stated here.

Activityld (String): ID of the activity in the workflow model

ActivityName (String): activity name (does not necessarily have to match the name in the
workflow model).

ActivityModelName (String): ID of the activity in the workflow model
Timerld(String): ID of a reminder time

TimerDuration(Int): timer duration

TimerDurationType(Int): 0: no period, 1: relative, 2: absolute

Changeable(Int): 0: no change possible, 1:The element can be changed by the client.
Deleteable(Int): 0: deletion not allowed, 1: element can be deleted

Remark (String): note on editing (Text)

Objectslds (String): list of editors' GUIDS (roles or persons), separated by comma

wfm.CreateProcessinstance
Description:

This job creates a process of the specified workflow family if the specified user has the right to execute a
workflow. The created process instance can then be started using the wfm.StartProcess job.

Parameter:

Userld (STRING): User ID

Organizationld (STRING): ID of the organization
Workflowld (STRING): ID of the workflow family
ClientTypeld (STRING): ID of the used client type

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Processld (STRING): ID of the newly created process

See also:

wfm.GetWorkflowList, wfm.StartProcess

enaio®

Page 224

enaio® server-api enaio®

wfm.GetActivityPerformers
Description:

This job returns all users/roles which are assigned to the activity as participants
Parameter:

RActivityld (STRING): instance ID of the activity

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Objectlds (BASE64): XML list of roles/users

Organizationld (STRING): ID of the organization to which the roles/users belong
Example:

Structure of the Object Ids

<Objects>
<Object Id=""E95EF24F6C6AE1A40F" Absent=""0" Substitute="0" Flag=""1"/>
<Object |d=""8FDD6BCBO6CE478699" Absent=""0" Substitute="0" Flag=""1"/>
<Object Id=""A7286EA0463F382057" Absent="0" Substitute="0" Flag="1"/>
</Objects>

Note:
Detailed description of Objectlds
Object: structure with the following contents
§ ID (STRING): object ID
8 Absent (LONG): this flag indicates whether the person is absent = 1 or present =0
8 Substitute (LONG): this flag indicates whether the person sees the activity in substitution = 1
§ Flag (LONG):
§ 1 =user is directly assigned to the process step (not through a role assignment)
§ 2 =the process step goes to the user's inbox
§ 4 =process step is personalized by this user
See also:

wim.SetActivityPerformers

wfm.GetProcessFile
Description:

This job supplies the records for a process.
Parameter:

Processld (String): Process ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

enaio® Page 225

enaio® server-api enaio®

File (BASE64): The file to the process in XML format
Example:

Structure of File

<File>
<Docs>
<Doc 1d=""45" Type="23" Location="1" Workspace="0" New="1" Deleteable="1"
Moveable="2" UseActiveVariant="0" Originalld="42" Display="1" />
</Docs>
</File>

Note:

Detailed description of Workspace

8 Doaocs: list of parameters (Doc) with the following structure
& ID (STRING): ID of the document
§ Type (LONG): Document type

§ Location (INT): indicates whether the document is located in the SDREL (location = '1',
SDREL is the database table Root-Document Relation) or in the system tray (location = '2")

§ Workspace (INT): indicates whether the object is in the info area (0) or in the workspace (1)
§ New (INT): indicates whether the object was newly added to the file (New ='1")

§ Deleteable (INT): indicates whether it is allowed to delete the document from the file (0 = no, 1
= yes)
§ Moveable (INT): indicates whether the document can be moved in the file (0 = no, 1 = yes)

§ UseActiveVariant (INT): indicates whether the active variant is to be used for the object (0 =
no, 1= yes)

§ Originalld (INT): indicates which document was originally dragged into the file (which ID this
document had)

§ Display (INT): indicates whether this document is to be displayed in the preview (0 = no, 1=
yes)

wfm.GetProcessList

Description:

This job returns a list of processes, the status of which can be specified.
Parameter:

Flags (INT): combined flag indicating the possible status of the processes to be queried
1 =CSPROCESS_INIT

2 = CSPROCESS_RUNNING

4 = CSPROCESS_SUSPENDED

8 = CSPROCESS_ACTIVE

16 = CSPROCESS_TERMINATED

32 = CSPROCESS_COMPLETED

w W W W W W

Return:

(INT): 0 = job successful, otherwise error code
enaio® Page 226

enaio® server-api

Return values:
Processes (BASE64): information on the requested processes in XML format
Example:

Structure of processes

enaio®

<Processes>

<Process>

<|d>9E813BD6D4054B6ABD9385A804FEA398</1d>

<Name>test 231</Name>

<Subject>Test (€42)</Subject>

<State>2</State>
<Creator1d>8FDD6BCBO6CE467FAE8885E81F078699</Creatorld>
<CreationTime>1077888972</CreationTime>

</Process>

</Processes>

Note:
Detailed description of Process
§ ID (STRING): Process ID
Name (STRING): Process name
State (INT): Process status
Creatorld (STRING): ID of the process creator

wn w W w

CreationTime (INT): process creation time

wfm.GetProcessListByObject
Description:

This job returns a list of processes which contain a specified object in their files.

Parameter:

§ Organizationld (STRING): Organization ID

§ Objectld (INT): ID of the object

8 Userld (STRING, optional): user ID in the organizational structure
§

AllProcesses(INT, optional, default =0): If 1, then completed processes are determined as well.

Otherwise only running processes are returned.
Return:
(INT): 0 = job successful, otherwise error code
Return values:
Processes (BASE64): information on the requested processes in XML format
Example:

Structure of processes

<Processes>

<Process

Id ="9E813BD6D4054B6ABD9385A804FEA398™
Name=""test 231"

Subject ="Test (€42)

State=""2""

enaio® Page 227

enaio® server-api

enaio®

Creator1d=""8FDD6BCBO6CE467FAE8885E81F078699"

CreationTime=""1077888972"
ProcessResponsible="0"

</Process>

</Processes>

Note:
Detailed description of Process
§ ID (STRING): Process ID
Name (STRING): Process name
State (INT): Process status
Creatorld (STRING): ID of the process creator

CreationTime (INT): process creation time

w w W W wn

otherwise

wfm.GetProcessProtocol
Description:

This job returns the log file for a process.
Parameter:

Processld (STRING): Process ID

Return:

(INT): 0 = job successful, otherwise error code
Return values:

File list: name and path of the log file

wfm.GetProcessResponsibles
Description:

This job returns the supervisor for the specified process.

Parameter:

Processld (STRING): Process ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Processld (STRING): ID of the organization of the process

Responsibles (STRING): comma-separated list of IDs of process supervisors
See also:

wfm.GetProcessResponsibles

enaio® Page 228

ProcessResponsible (INT): 1 = the querying user is the process owner for this process; 0 =

enaio® server-api

wfm.GetRunningActivities
Description:

This job returns all activities which have to be performed for a specified user.
Parameter:

Organizationld (STRING): Organization ID

Userld (STRING): ID of the enaio® user name

ClientTypeld (String): ID of the used client type

Return:

(INT): 0 = job successful, otherwise error code

Return values:

RunningActivities (BASE64): data list of all the user's running activities in XML format
Example:

Structure of RunningActivities

enaio®

RunningActivity
<RunningActivity>

<Activity ld=""" RActivityld="" Name=""" State=""" ClosureTime=""" OverTime="""

ReminderTime=""" CanCancel =""/>
<User Name=""'/>

<Process Id=""" Name=""" Workflowld=""" CreationTime=""" Iconld=""" Objectld="""/>

<Columns>

<Column DisplayName=""" Value=""" Position=""">
<Column DisplayName=""" Value=""" Position=""">
</Columns>

</RunningActivity>

<RunningActivity>

<Activity ld=""" RActivityld="" Name=""" State=""" ClosureTime=""" OverTime=""

ReminderTime=""" CanCancel ="""/>
<User Name=""'/>

<Process Id=""" Name=""" Workflowld=""" Subject=""" CreationTime="" Iconld="""/>

<Columns/>
</RunningActivity>
</RunningActivities>

Note:
Detailed description of the return value RunningActivities
8 Activity: structure describes a running activity

§ ID (STRING): ID of the activity in the model
RActivityld (STRING): instance ID of the activity
Name (STRING): Activity name
State (INT): Activity status

ClosureTime (INT): closure time indicates how long the activity remains closed

w W W W W W

§ CanCancel (INT): no longer supported -> always 0
§ User:

enaio® Page 229

ReminderTime (INT): reminder time indicating when the activity should be finished

OverTime (INT): flag indicates whether the activity should already have been finished (1)

enaio® server-api enaio®

§ Name (STRING): name of the personalized user
8 Process: describes the associated process
§ ID (STRING): Process ID
Name (STRING): Process name
Workflowld (STRING): workflow ID
Subject (STRING): Process subject
CreationTime (INT): process creation time
Iconld (INT): icon ID of the workflow model
Objectld(String): ID of the document to be displayed by the clients in the preview.

w WU W w W W

§ Columns: list of elements of the 'Column' type

§ Column: used to display workflow variables

§ DisplayName (STRING): the variable will be displayed under this name
§ Value: variable value
§

Position (INT): dictates the order of elements

wfm.GetWorkltemList
Description:

This job returns a list of all process steps for which the indicated user is configured as participant and
which have not been personalized by another participant.

Parameter:

Organizationld (STRING): Organization ID
Userld (STRING): User ID

ClientTypeld (String): ID of the used client type

Flags (INT): the queried process steps can be narrowed down with flags.

§ 1=INITIATED

8§ 2=RUNNING

8 4 =SUSPENDED

8 16 = TERMINATED
§ 32=COMPLETED
8 64 =INUSE

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Workltems (BASE64): list with requested process steps in XML format
Example:

Structure of Workltems

enaio® Page 230

enaio® server-api enaio®

<Workltems>

<Workltem Id=""" State=""" Personalized=""" Processld=""" ProcessName=""
Activityld=""" ActivityName=""" WarningTime=""" OverTime="""
CreationTime=""" Workflowld=""" Substitute=""" lconld=""" WorkflowType="2"
WorkflowVersion="5" Objecld="32">

<Columns>

<Column DisplayName=""" Value=""" Position=""">

<Column DisplayName=""" Value=""" Position=""">

</Columns>

</Workltem>

<Workltem Id="" State=""" Personalized=""" Processld=""" ProcessName="""
ProcessSubject=""" Activityld="" ActivityName="" WarningTime="""

OverTime=""" CreationTime=""" Workflowld=""" Substitute=""" Iconld="" WorkflowType="1"
WorkflowVersion="42" Objecld="52">

<Columns>

<Column DisplayName=""" Value=""" Position=""">

<Column DisplayName=""" Value=""" Position=""">

</Columns>

</Workltem>

</Workltems>

Note:
Detailed description of Workltems
8 Workltem: describes a process step

& ID (STRING): ID of the process step

§ State (INT): status of the process step

§ 1=INITIATED

2=RUNNING
4 = SUSPENDED
16 = TERMINATED
32 =COMPLETED
64 = INUSE
Personalized (STRING): name of the user who has personalized this step
Processld (STRING): Process 1D
ProcessName (STRING): Process name

w w W W wWw

ProcessSubject (STRING): process subject

Activityld (STRING): instance ID of the activity

ActivityName (STRING): Activity name

WarningTime (INT): Reminder time

OverTime (INT): flag indicating whether the step should already have been finished (1)
CreationTime (INT): creation time of the activity

Workflowld (STRING): Workflowid

Iconld (INT): icon ID of the workflow model

Substitute (INT): 1 = user receives the process step as a substitute, otherwise 0
WorkflowType (INT): 1 = ProductionWorkflow, 2 = Adhoc Workflow

WorkflowVersion (INT): returns the version number of the workflow model

w W W W W W W W W W W W W W

enaio® Page 231

enaio® server-api enaio®

§ Objectld (String): the ID of the document to be displayed by the clients in the preview.
§ Columns: list of elements of the ‘Column’ type

Column: used to display workflow variables

DisplayName (STRING): the variable will be displayed under this name

Value: variable value

w w W w

Position (INT): dictates the order of elements
See also:
wim.GetWorkltem, wifm.StartWorkltem, wifm.GetWorkltemParams

wfm.GetWorkltemParams
Description:

This job determines all parameters of a process step for the user who has personalized the process step.
All workflow variables, parameters for the input mask, contents of the workflow file and additional
parameters (e.g. a password has to be entered for forwarding) are returned. This job was replaced by
wfm.GetWorkItem.

Parameter:

Workltemld (STRING): instance ID of the activity

Userld (STRING): User ID

ClientTypeld (String): ID of the used client type

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Parameters (BASE64): XML list of parameters for the data mask
ExtendedAttributes (BASE64): XML list with data for the parameters (‘attributes')
File (BASE64): XML list with documents of the info area/workspace of the WF file
RoutingList (Base64): routing list. This parameter is optional.

Example:

Structure of Parameters

<Parameters>

<Parameter FormField="" DataField=""" Name='""' Mode=""" Selection="""
InfoText=""" ListType=""" ><I[CDATA[]]></Parameter>

<Parameter FormField="" DataField=""" Name='""' Mode=""" Selection="""
InfoText=""" ListType=""" ><I[CDATA[]]1></Parameter>

</Parameters>

Note:

Detailed description of Parameters
8 Parameters: list of formal parameters with the following structure (or subsets of it)

§ FormField (STRING): ID of the field on a form to which the workflow variable is assigned, if
there is no assignment name of the workflow variable

§ DataField (STRING): ID of the workflow variable

enaio® Page 232

enaio® server-api enaio®

§ Name (STRING): name of the workflow variable
§ Mode (INT): mode of the workflow variable
§ 1=input parameter
§ 2 =output parameter
§ 3 =input/output parameter
§ Selection (STRING): selection type for workflow variables in list form (single or multi:x)
§ InfoText (string): information text Infotext for workflow variables in list form
§ ListType (STRING): list type
§ ProcessList
§ UserList
§ UserDefList
§ CDATA: structure and data of the workflow variable
Example:
Structure of ExtendedAttributes

<ExtendedAttributes>

<ExtendedAttribute Name="MASKID" Value="""/>
<ExtendedAttribute Name=""SEND_BUTTON" Value="0"/>
<ExtendedAttribute Name="SENDTO_BUTTON" Value="0"/>
<ExtendedAttribute Name="END_BUTTON" Value="0"/>
<ExtendedAttribute Name="SIGN_ACTIVITY" Value="""/>
<ExtendedAttribute Name="CHECK_ PASSWORD'" Value=""/>
</ExtendedAttributes>

Note:
Detailed description of ExtendedAttributes
§ ExtendedAttributes: list of parameters (‘attributes’) with the following structure

§ Name (STRING): attribute name

§ MASKID: GUID of the workflow mask

SEND_BUTTON:
END_BUTTON:
SIGN_ACTIVITY: 1 = digital signature required, otherwise 0
CHECK_PASSWORD: 1 = a password must be entered for forwarding, otherwise 0

w W W wW

§ Value: attribute value
Example:

Structure of RoutingList

<RoutingList 1d=""3294B433BFF6454D9C861B86B5A8AD5D"
Processl1d=""BA16C21BB96D46D099E72070BCB644CC""
Activityld="3294B433BFF6454D9C861B86B5A8AD5D"" Expandable=""1"">

<Entries>

<Entry Nr="203" Expandable="1">

<ltem 1d=""99825B18A8334987935684FDA3D6A40D"
Activityld="6EE4490A48164A0FA6DC34A80099AF66" ActivityName="Create invoice"
ModelActivityName=""Create invoice" Remark=""" Timerld=""" TimerDuration="""
TimerDurationType=""" Changeable="1" Deleteable="0">
<Objectlds></0Objectslds>

enaio® Page 233

enaio® server-api enaio®

</ltem>

</Entry>

<Entry Nr="253" Expandable="1">

<ltem Id=""E15594D692C14FDA9AFDESFAOA43F6E4"
Activityld="6EE4490A48164A0FAG6DC34A80099AF67" ActivityName="Approve invoice BL"
ModelActivityName="Approve invoice"™ Remark="" Timerld=""" TimerDuration="""
TimerDurationType=""" Changeable="1" Deleteable="0">

<Objectlds></Objectslds>

</ltem>

<ltem Id=""C6DA9503CD874D69A9B703DOEO6A52E8"
Activityld="6EE4490A48164A0FAG6DC34A80099AF67" ActivityName="Approve invoice GF"
ModelActivityName="Approve invoice" Remark=""" Timerld=""" TimerDuration="""
TimerDurationType=""" Changeable="1" Deleteable="0">

<Objectlds></Objectslds>

</ltem>

</Entry>

</Entries>

</RoutingList>

8 RoutingList: routing list with the following structure (or subsets of it)

8 ID (String): routing list ID. The value is set by the server and must not be changed.
8 Processld (String): Process ID
8 Activityld (String): activity ID
§ Expandable (Int): O: routing list cannot be expanded, 1: routing list can be expanded
§ Entries: the structure combines entries of the routing list. An entry consists of multiple
elements which can be executed simultaneously.
§ Entry: describes an entry in the routing list.
§ No (Int): for relative sorting of entries within the routing list. The absolute values do not have
any influence on the client.
§ Expandable (Int): 0: entry cannot be expanded, 1: entry can be expanded
§ Item: describes an element of the routing list. This can be an activity, an executing person or a
deadline.
§ ID (STRING): for identification This ID must not be changed and must be identically sent for
all jobs. If an item was created by the client, the ID must be stated here.
§ Activityld (String): ID of the activity in the workflow model
§ ActivityName (String): activity name (does not necessarily have to match the name in the
workflow model).
§ ActivityModelName (String): ID of the activity in the workflow model
§ Timerld(String): ID of a reminder time
§ TimerDuration(Int): timer duration
§ TimerDurationType(Int): 0: no period, 1: relative, 2: absolute
§ Changeable(Int): 0: no change possible, 1: The element can be changed by the client.
§ Deleteable(Int): 0: deletion not allowed, 1: element can be deleted
§ Remark (String): note on editing (Text)
§ Objectslds (String): list of editors’ GUIDS (roles or persons), separated by comma
Example:

Structure of File
enaio® Page 234

enaio® server-api enaio®

<File>
<Docs>
<Doc 1d=""45" Type="23" Location="1" Workspace="0" New="'1" Deleteable="1"
Moveable="2" UseActiveVariant="0" Originalld="42" Display="1" />
</Docs>
</File>

Note:

Detailed description of Workspace

8 Docs: list of parameters (Doc) with the following structure
§ ID (STRING): ID of the document
§ Type (LONG): Document type

§ Location (INT): indicates whether the document is located in the SDREL (location ='1",
SDREL is the database table Root-Document Relation) or in the system tray (location = '2")

§ Workspace (INT): indicates whether the object is in the info area (0) or in the workspace (1)
§ New (INT): indicates whether the object was newly added to the file (New ='1")

§ Deleteable (INT): indicates whether it is allowed to delete the document from the file (0 =no, 1
= yes)
§ Moveable (INT): indicates whether the document can be moved in the file (0 = no, 1 = yes)

§ UseActiveVariant (INT): indicates whether the active variant is to be used for the object (0 =
no, 1= yes)

§ Originalld (INT): indicates which document was originally dragged into the file (which ID this
document had)

§ Display (INT): indicates whether this document is to be displayed in the preview (0 = no, 1=
yes)

wfm.SetActivityPerformers
Description:

This job sets the participants for an activity. Roles and users can be chosen as participants. Note that
old settings will be overwritten.

Parameter:

Organizationld (STRING): ID of the organization to which the roles/users belong
Userld (STRING): ID of the executing user

RActivityld (STRING): instance ID of the activity

Objectlds (String): GUIDs of the roles/users, separated by commas

Return:

(INT): 0 = job successful, otherwise error code

See also:

wim.GetActivityPerformers

enaio® Page 235

enaio® server-api enaio®

wfm.SetProcessResponsibles
Description:

This job sets the persons who are responsible for a process.

Parameter:

Processld (STRING): Process ID

Organizationld (STRING): Organization ID

Responsibles (STRING): comma-separated list of IDs of process supervisors
Return:

(INT): 0 = job successful, otherwise error code

wfm.StartProcess
Description:

This job starts a workflow process. It is verified whether the specified user is authorized to start the
process. The start activity of the process is executed. In order to be able to use this job, a process
instance has to be created using the job wfm.CreateProcessinstance. Documents passed to the process
are always located in the workspace of the workflow file.

Parameter:

Userld (STRING): User ID

Processld (STRING): Process ID

Workspace (BASE64): contains documents in XML format

DataFields (BASE64): contains the structure and values of the input variables in XML format
Return:

(INT): 0 = job successful, otherwise error code

Example:

Workspace structure:

<Workspace>

<Docs>

<Doc Id =""" Type=""" Location=""" Moveable="" Deleteable="" Workspace="""/>
<Doc Id =""" Type=""" Location="" Moveable="" Deleteable=""" Workspace="""/>
</Docs>

</Workspace>

Note:

Detailed description of Workspace

§ Doc structure which encapsulates information for a document
§ 1d (INT): ID of the document
§ Type (INT): Document type

§ Location (INT): indicates whether the document is located in the SDREL (location = '1',
SDREL is the database table Root-Document Relation) or in the system tray (location = '2")

§ Moveable (INT): indicates whether the document can be moved from the info to the workspace
(and the other way round), moveable = 1, otherwise 0

enaio® Page 236

enaio® server-api enaio®
§ Deletable (INT): indicates whether the document can be deleted from the file (deletable = 1),

otherwise 0

§ Workspace (INT): indicates whether the object has to be in the info area (0) or in the
workspace (1)

Example:

Structure of DataFields

<DataFields>

<DataField ld=""iDiscount'>
<I[CDATA[<WFVar><String>0</String></WFVar>]]>
</DataField>

<DataField Ild="iDiscountable'>
<I[CDATA[<WFVar><String>0</String></WFvVar>]]>
</DataField>

<DataField ld=""lPositions'>

<I[CDATAL

<List Typeld=""920C3899284B424EACBF881EE3A714C0"">
<Listltem I1d="00000000000000000000000000000001" Selection="0">
<Record>

<Member Name=""iPosition'><STRING>1</STRING></Member>
<Member Name="'strName''><STRING>Tisch</STRING></Member>
</Record>

</Listltem>

</List>

11>

</DataField>

</DataFields>

Note:
Detailed description of DataFields
§ DataField: Workflow variable
§ 1d (STRING): name of the workflow variable
§ CDATA: structure of the workflow variable
See also:

wfm.GetOrganizationObjects, wfm.CreateProcesslnstance,

wfm.StartWorkltem
Description:

This job starts a process step. The process step is personalized for the indicated user. This job was
replaced by wfm.GetWorkltem.

Parameter:

Userld (STRING): User ID

Workltemld (STRING): instance ID of the activity
ClientTypeld (String): ID of the used client type
Return:

(INT): 0 = job successful, otherwise error code

See also:

enaio® Page 237

enaio® server-api enaio®

wim.GetWorkltemList, wfm.CancelWorkltem, wim.CompleteWorkltem

wfm.GetWorkltem
Description:

This job starts a process step. The process step is personalized for the indicated user. Additionally all
required data (form, file and workflow variables) will be returned for the client.

Parameter:

Userld (STRING): User ID

Workltemld (STRING): instance ID of the activity

ClientTypeld (String): ID of the used client type

Return:

(INT): 0 = job successful, otherwise error code

Return values:

ExtendedAttributes (BASE64): XML list with data for the parameters (‘attributes')
Format

File (BASE64): XML list with documents of the info area/workspace of the WF file
Masks (BASE64): mask data in XML format

Parameters (BASE64): XML list of parameters for the data mask

RoutingList (Base64): routing list. This parameter is optional.

See also:

wfm.GetWorkltemList, wfm.CancelWorkItem, wfm.CompleteWorkltem

Example:

Structure of ExtendedAttributes

<ExtendedAttributes>

<ExtendedAttribute Name="MASKID" Value="""/>
<ExtendedAttribute Name="SEND_BUTTON" Value="0"/>
<ExtendedAttribute Name="SENDTO_BUTTON" Value="0"/>
<ExtendedAttribute Name="END_BUTTON" Value="0"/>
<ExtendedAttribute Name=""SIGN_ACTIVITY" Value="""/>
<ExtendedAttribute Name="CHECK_PASSWORD'" Value="'"/>
</ExtendedAttributes>

Note:
Detailed description of ExtendedAttributes
§ ExtendedAttributes: list of parameters (‘attributes’) with the following structure

§& Name (STRING): attribute name

§ MASKID: GUID of the workflow mask

SEND_BUTTON:
END_BUTTON:
SIGN_ACTIVITY: 1 = digital signature required, otherwise 0
CHECK_PASSWORD: 1 = a password must be entered for forwarding, otherwise 0

w W W W

enaio® Page 238

enaio® server-api enaio®

§ Value: attribute value
Example:

Structure of File

<File>

<Docs>

<Doc Id =""" Type=""" Rights=""" Location=""" Workspace=""" Deleteable="0" Moveable ="1"
UseActiveVariant=""" Originalld="" Display="""/>

<Doc Id ="" Type="" Rights=""" Location=""" Workspace=""" Deleteable="1" Moveable="1"
UseActiveVariant="""" Originalld="" Display="""/>

</Docs>

</File>

Note:
Detailed description of File
§ File: encapsulates the parameters Workspace and Infospace
§ Docs: a list of document parameters (‘Doc') with this structure (or a subset of it)
§ 1d (INT): ID of the DMS document
§ Type (INT): Document type
§ Rights (INT): access rights

0 = accessDenied

1 = accessView

2 = accessEdit

4 = accessDelete

8 = accessEditDataSheet
15 = accessAll

§ Location (INT): location of the document (1: SDREL, 2: WF filing tray (document does
not yet have a location))

§ Workspace (INT): indicates whether the object is in the info area (0) or in the workspace
)
§ Deleteable (INT): indicates whether it is allowed to delete the document from the file (0 = no, 1
= yes)
§ Moveable (INT): indicates whether the document can be moved in the file (0 = no, 1 = yes)

§ UseActiveVariant (INT): indicates whether the active variant is to be used for the object (0 =
no, 1=yes)

§ Originalld (INT): indicates which document was originally dragged into the file (which ID this
document had)

§ Display (INT): indicates whether this document is to be displayed in the preview (0 = no, 1=
yes)
Example:

Structure of masks

<Masks>
<Mask Id=""" Name=""" Flags=""" FrameWidth=""" FrameHeight=""">
<MaskField Id=""" Name=""" InternalName=""" FieldName=""" TabOrder="""

DataType=""" InpLen=""" Init=""" Flags=""" Flagsl=""" Flags2=""
InpLeft=""" InpTop=""" InpRight=""" InpBottom="" FieldLeft=""
FieldTop="" FieldRight="" FieldBottom=""" ToolTip="" Valuesld=""">
<MaskFieldVal><![CDATA[11></MaskFieldval>

enaio® Page 239

enaio® server-api

enaio®

</MaskField>

<IStructure for Listcontrols -->

<MaskField Id=""" Name=""" InternalName=""" TabOrder=""
DataType=""" InpLen=""" Init=" Flags="" Flagsl=""" Flags2="""
InpLeft=""" InpTop=""" InpRight=""" InpBottom="" FieldLeft=""
FieldTop="" FieldRight=""" FieldBottom=""" ToolTip=""" Valuesld=""">
<MaskListCtrils>

<MaskListCtrl ColPos="" Name=""" Type=""" Length=""
ColwWidth=""" Color=""" TextAlign="" Valuesld=""/>
<MaskListCtriVal><I[CDATA[]]></MaskListCtriVal>
</MaskListCtrls>

</MaskField>

<IStructure for Pagecontrols -->

<MaskField Id=""" Name=""" InternalName=""" TabOrder=""

DataType=""" InpLen=""" Init=" Flags="" Flagsl=""" Flags2="""
InpLeft=""" InpTop=""" InpRight=""" InpBottom="" FieldLeft=""
FieldTop="" FieldRight=""" FieldBottom="" ToolTip=""" Valuesld=""">

<Page Id=""" Name=""" Number=""" lconld="""/>
<MaskFields>
<MaskField Id=""" Name=""" InternalName="""

TabOrder=""" DataType=""" InpLen=""" Init="" Flags=""" Flagsl=""
Flags2=""" InpLeft=""" InpTop=""" InpRight=""" InpBottom="""
FieldLeft=""" FieldTop=""" FieldRight="" FieldBottom="""
ToolTip=""" Valuesld="""/>

</MaskFields>

</Page>

</MaskField>

</Mask>

</Masks>

Note:
Detailed description of Masks
§ Masks: list of masks, the elements of this list are of the 'Mask' type
§ Form structure which also contains a list of form fields of the ‘MaskField" type
ID (STRING): ID of the mask
Name (STRING): mask name
Flags (INT): Flags
FrameWidth (INT): width of the mask
FrameHeight (INT): height of the mask

w W W w W wW

MaskField: structure containing the information about a mask field, including either the

value of the mask field (‘MaskfieldVal') or a list of form field controls (‘MaskListCtrls"):

ID (STRING): ID of the form field
Name (STRING): name

InternalName (STRING): internal name
TabOrder (INT): tabulator order
DataType (INT?): Data type

InpLen (INT): Input length

w W w W W W

enaio® Page 240

enaio® server-api enaio®

Init (STRING): initialization value

Flags (INT): Flags

Flagsl (INT): other flags

Flags2 (INT): other flags

InpLeft (INT): X position of the input field

InpTop (INT): Y position of the input field

InpRight (INT): width of the input field

InpBottom (INT): height of the input field

FieldLeft (INT): X of the field label

FieldTop (INT): Y of the field label

FieldRight (INT): width of the field label in pixels

FieldBottom (INT): height of the field label in pixels

ToolTip (INT): Tooltip

Valuesld (INT): reference to list fields

MaskFieldVal: form field value as CDATA

MaskListCtrl: structure containing information and data for a form field control
ColPos (INT): column position

Name (STRING): name

Type (STRING): Type

Length (INT): Length

ColWidth (INT): column width

Color (INT): Color

TextAlign (INT): text alignment

Valuesld (STRING): reference to list fields

MaskListCtrlVal: form field control value as CDATA

Page: Structure containing the information about a page control (then again contains MaskFields)
Id (STRING): pagecontrol ID

Name (STRING): Pagecontrol name

Number (INT): indicates the position (‘page number") of a page

Iconld (INT): ID of the icon (from the DB table Osicons) which will be displayed on the
pagecontrol

w W

Example:

Structure of Parameters

<Parameters>

<Parameter FormField=""" DataField=""" Name=""" Mode=""" Selection="""
InfoText=""" ListType=""" ><I[CDATA[]]></Parameter>

<Parameter FormField="" DataField=""" Name='""' Mode=""" Selection="""
InfoText=""" ListType=""" ><I[CDATA[]]></Parameter>

</Parameters>

enaio® Page 241

enaio® server-api enaio®

Note:
Detailed description of Parameters
8 Parameters: list of formal parameters with the following structure (or subsets of it)

§ FormField (STRING): ID of the field on a form to which the workflow variable is assigned, if
there is no assignment name of the workflow variable

§ DataField (STRING): ID of the workflow variable
§ Name (STRING): name of the workflow variable
§ Mode (INT): mode of the workflow variable
§ 1=input parameter
§ 2 =output parameter
§ 3 =input/output parameter
§ Selection (STRING): selection type for workflow variables in list form (single or multi:x)
§ InfoText (string): information text Infotext for workflow variables in list form
§ ListType (STRING): list type
§ ProcessList
§ UserList
§ UserDefList
§ CDATA: structure and data of the workflow variable
Example:

Structure of RoutingList

<RoutingList 1d=""3294B433BFF6454D9C861B86B5A8AD5D"
Processl1d=""BA16C21BB96D46D099E72070BCB644CC""
Activityld="3294B433BFF6454D9C861B86B5A8AD5D" Expandable=""1">

<Entries>

<Entry Nr="203" Expandable=""1">

<ltem 1d=""99825B18A8334987935684FDA3D6A40D""
Activityld="6EE4490A48164A0FA6DC34A80099AF66" ActivityName="Create invoice"
ModelActivityName="Create invoice" Remark=""" Timerld=""" TimerDuration="""
TimerDurationType="" Changeable="1" Deleteable="0">
<Objectlds></0Objectslds>

</ltem>

</Entry>

<Entry Nr="253" Expandable=""1">

<ltem Id="E15594D692C14FDA9AFDESFAOA43F6E4"
Activityld="6EE4490A48164A0FAG6DC34A80099AF67" ActivityName="Approve invoice BL"
ModelActivityName="Approve invoice”™ Remark="" Timerld="" TimerDuration="""
TimerDurationType=""" Changeable="1" Deleteable="0">
<Objectlds></Objectslds>

</ltem>

<ltem Id=""C6DA9503CD874D69A9B703DOEO6AS2ES"
Activityld="6EE4490A48164A0FAG6DC34A80099AF67" ActivityName="Approve invoice GF"
ModelActivityName="Approve invoice" Remark=""" Timerld=""" TimerDuration="""
TimerDurationType=""" Changeable="1" Deleteable="0">
<Objectlds></Objectslds>

</ltem>

</Entry>

</Entries>

</RoutingList>

Warning, will be extended!!!
enaio® Page 242

enaio® server-api enaio®

8 RoutingList: routing list with the following structure (or subsets of it)

§ ID (String): routing list ID. The value is set by the server and must not be changed.
8 Processld (String): Process ID

§ Activityld (String): activity ID

§ Expandable (Int): O: routing list cannot be expanded, 1: routing list can be expanded

§ Entries: the structure combines entries of the routing list. An entry consists of multiple
elements which can be executed simultaneously.

§ Entry: describes an entry in the routing list.

§ No (Int): for relative sorting of entries within the routing list. The absolute values do not have
any influence on the client.

§ Expandable (Int): 0: entry cannot be expanded, 1: entry can be expanded

§ Item: describes an element of the routing list. This can be an activity, an executing person or a
deadline.

§ ID (STRING): for identification This ID must not be changed and must be identically sent for
all jobs. If an item was created by the client, the ID must be stated here.

§ Activityld (String): ID of the activity in the workflow model

§ ActivityName (String): activity name (does not necessarily have to match the name in the
workflow model).

ActivityModelName (String): ID of the activity in the workflow model
Timerld(String): ID of a reminder time

TimerDuration(Int): timer duration

TimerDurationType(Int): 0: no period, 1: relative, 2: absolute

Changeable(Int): 0: no change possible, 1:The element can be changed by the client.
Deleteable(Int): 0: deletion not allowed, 1: element can be deleted

Remark (String): note on editing (Text)

w w W W W W W W

Objectslds (String): list of editors' GUIDS (roles or persons), separated by comma

Workflow Form, Event and Script
wfm.DeleteEvent

wfm.DeleteMasks

wfm.DeleteScript

wfm.GetEvents

wfm.GetEventTypes
wfm.GetGlobalScripts

wfm.L oadMasks

wfm.L oadScript

wfm.SaveEvent

wfm.SaveMasks

wfm.SaveScript

enaio® Page 243

w W W W W W W W W W W

enaio® server-api

§ wfm.SetEventScriptRelation

wfm.DeleteEvent
Description:

This job deletes one or more workflow events of a specific workflow model.
Parameter:

Organizationld (STRING): ID of the organization

Workflowld (STRING): ID of the workflow model

Eventlds (STRING): comma-separated GUID list of events to be deleted
ClientTypeld (String): ID of the used client type

Return:

(INT): 0 = job successful, otherwise error code

See also:

wim.GetEvents

wfm.DeleteMasks
Description:

This job deletes one or more workflow forms of a specific workflow model.
Parameter:

Organizationld (STRING): ID of the organization

Workflowld (STRING): ID of the workflow model

Masklds (STRING): comma-separated GUID list of the masks to be deleted
Return:

(INT): 0 = job successful, otherwise error code

Return values:

Organizationld (STRING): ID of the organization

Workflowld (STRING): ID of the workflow model

Masklds (STRING): comma-separated GUID list of the masks that could not be deleted

wfm.DeleteScript
Description:

This job deletes a script belonging to a workflow event.
Parameter:

Organizationld (STRING): ID of the organization
Workflowld (STRING): ID of the workflow

Scriptld (STRING): ID of the script

Return:

enaio® Page 244

enaio®

enaio® server-api enaio®

(INT): 0 = job successful, otherwise error code

wfm.GetEvents

Description:

This job returns a list of all set up events for an activity or the entire workflow model.
Parameter:

Organizationld (STRING): ID of the organization

Workflowld (STRING): ID of the workflow model

Activityld (STRING): ID of the activity. If the parameter is left blank, all events of the workflow model
are returned.

ClientTypeld (String): ID of used client type. If the parameter is left blank, all defined client type events
are returned.

EventTypeGroups (INT): combinable flag, indicates which events are requested
1 —all Client events are returned

2 —the global Client script is returned

4 —all server events are returned

8 — the global Client script is returned

w w W W wWw

15 —all events are returned

Code (INT): if code = 0 no script code is transferred, if code = 1 a script code is transferred
Return:

(INT): 0 = job successful, otherwise error code

Return values:

Events (BASE64): contains the requested event list in XML format

Example:

Structure of events

<Events>

<Event>

<ld></I1d>

<EventType></EventType>
<Activityld></Activityld>

<Params></Params>

<Desription></Description>
<ClientTypeld></ClientTypeld>

<Script Id=""" Name=""" Time=""" Description="" ScriptLanguage="1">Script

</Script>

</Event>

</Events>

Note:

Detailed description of Events:

8 Event: contains further elements and the 'Script’ structure
§ ID (STRING): event ID
§ EventType (LONG): event type

enaio® Page 245

enaio® server-api

1 = BeforeForward

2 = AfterForward

3 = BeforeForwardTo

4 = ButtonClick

5 = BeforeOpen

6 = AfterSignature

7 = BeforeCancel

8 = SimulateMaskEdit

10000 = StartActivity

10001 = EndActivity

10003 = PersonalizeWorkltem
10004 = GetWorkltemParams
1000000 = global server script
1000001= global client script

w W W W W W W W W W W W W W

Params: ID of the button for the 'ButtonClick' event type
Description (STRING): not currently supported
Activityld (STRING): ID of the activity for which the event was created
ClientTypeld (STRING): ID of the client type for which the event was created
Script: structure containing the script:
§ ID (STRING): ID of the script
Name (STRING): script name

w w W W wWw

Time (LONG): creation time of the script

Description (STRING): not currently supported

ScriptLanguage (LONG): script language (1 = VB script, 2 = J script)
CDATA: data (contains the script code)

w W w w

See also:

wfm.SaveEvent, wfm.DeleteEvent

wfm.GetEventTypes
Description:

This job returns all available event types.

Return:

(INT): 0 = job successful, otherwise error code

Return values:

EventTypes (BASE64): contains all event types in XML format
Example:

Structure of event types

enaio® Page 246

enaio®

enaio® server-api

enaio®

<EventTypes>

<EventType Id=""
<EventType Id=""
<EventType Id=""
<EventType Id=""
<EventType Id=""
<EventType Id=""

' Name="BeforeForward"/>

' Name=""AfterForward"/>

Name="BeforeForwardTo"/>

* Name=""ButtonClick"/>

' Name="'"BeforeOpen''/>

' Name=""AfterSignature'/>

<EventType Id="" Name="BeforeCancel' />

<EventType Id="8" Name="SimulateMaskEdit"/>

<EventType |d=""10000" Name="StartActivity'/>

<EventType [d="10001" Name="EndActivity'/>

<EventType 1d=""10002" Name='"BeforeStartSubProc'/>

<EventType 1d=""10003" Name="PersonalizeWorkltem"/>

<EventType 1d="10004" Name="'GetWorkltemParams'/>
<EventType Id=""10005" Name=''CancelWorkltem"/>

</EventTypes>

XN R QNH

Note:

Detailed description of EventTypes

§ EvenType: structure characterizing an event type
§ ID (STRING): EventType ID
§ Name (STRING): EventType name

wfm.GetGlobalScripts
Description:

This job returns the global scripts for a workflow model.

Parameter:

Workflowld (STRING): ID of the workflow model

Organizationld (STRING): ID of the organization

Code (LONG): 0 = no script code is returned, 1 = script code is returned
Return:

(INT): 0 = job successful, otherwise error code

Return values:

Scripts (BASE64): contains the global scripts in XML format

Example:

Structure of scripts

<Scripts>

<Script Id ="" Type="2"><I[CDATA[...]]1></Script>
<Script Id ="" Type="3"><I[CDATA[...]]1></Script>
</Scripts>

Note:

Detailed description of Script
8§ Script: structure characterizing a global script
& Id (STRING): script ID
§ Type (LONG): indicates whether it is a server script (2) or a client script (3)

enaio® Page 247

enaio® server-api enaio®

wfm.LoadMasks
Description:

This job returns all specified forms or all forms for a workflow model with substructure (fields,
ListCtrICols, catalogs).

Parameter:
Organizationld (STRING): ID of the organization where the workflow and the masks are located
Workflowld (STRING): ID of the workflow incl. masks

Masklds (STRING): IDs of the requested masks (comma-separated); blank= all masks of the workflow
model are loaded

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Organizationld (STRING): ID of the organization where the workflow and the masks are located
Workflowld (STRING): ID of the workflow incl. masks

Masks (BASE64): mask data in XML format

Example:

Structure of masks

<Masks>
<Mask Id=""" Name=""" Flags=""" FrameWidth=""" FrameHeight=""">
<MaskField Id=""" Name=""" InternalName=""" FieldName=""" TabOrder="""

DataType=""" InpLen=""" Init="" Flags=""" Flagsl=""" Flags2=""'
InpLeft=""" InpTop=""" InpRight=""" InpBottom=""" FieldLeft=""
FieldTop="" FieldRight="" FieldBottom=""" ToolTip="" Valuesld=""">
<MaskFieldVal><![CDATA[]1></MaskFieldval>

</MaskField>

<IStructure for Listcontrols -->

<MaskField Id=""" Name=""" InternalName=""" TabOrder=""
DataType=""" InpLen=""" Init="" Flags="" Flagsl=""" Flags2=""
InpLeft=""" InpTop=""" InpRight=""" InpBottom="" FieldLeft="""
FieldTop="" FieldRight=""" FieldBottom="" ToolTip=""" Valuesld=""">
<MaskListCtrls>

<MaskListCtrl ColPos="" Name="" Type="" Length=""
ColwWidth=""" Color=""" TextAlign=""" Valuesld="""/>
<MaskListCtriVal><!I[CDATAL]]></MaskListCtrlVal>
</MaskListCtris>

</MaskField>

<IStructure for Pagecontrols -->

<MaskField Id=""" Name=""" InternalName=""" TabOrder="""

DataType=""" InpLen=""" Init=""" Flags=""" Flagsl=""" Flags2=""'
InpLeft=""" InpTop=""" InpRight=""" InpBottom="" FieldLeft=""
FieldTop="" FieldRight="" FieldBottom=""" ToolTip="" Valuesld=""">

<Page Id=""" Name=""" Number=""" lconld="""/>
<MaskFields>
<MaskField Id=""" Name=""" InternalName="""

TabOrder=""" DataType=""" InpLen=""" Init=""" Flags=""" Flagsl=""
Flags2=""" InpLeft=""" InpTop=""" InpRight=""" InpBottom="""

enaio® Page 248

enaio® server-api enaio®

FieldLeft=""" FieldTop=""" FieldRight=""" FieldBottom=""
ToolTip=""" Valuesld="""/>

</MaskFields>

</Page>

</MaskField>

</Mask>

</Masks>

Note:
Detailed description of Masks
8 Masks: list of masks, the elements of this list are of the ‘Mask' type
§ Form structure which also contains a list of form fields of the '"MaskField' type
ID (STRING): ID of the mask
Name (STRING): mask name
Flags (INT): Flags
FrameWidth (INT): width of the mask
FrameHeight (INT): height of the mask

w W W w W W

MaskField: structure containing the information about a mask field, including either the
value of the mask field (‘"MaskfieldVal') or a list of form field controls (‘MaskListCtrls"):

ID (STRING): ID of the form field

Name (STRING): name

InternalName (STRING): internal name
TabOrder (INT): tabulator order
DataType (INT?): Data type

InpLen (INT): Input length

Init (STRING): initialization value

Flags (INT): Flags

Flagsl (INT): other flags

Flags2 (INT): other flags

InpLeft (INT): X position of the input field
InpTop (INT): Y position of the input field
InpRight (INT): width of the input field
InpBottom (INT): height of the input field
FieldLeft (INT): X of the field label
FieldTop (INT): Y of the field label
FieldRight (INT): width of the field label in pixels
FieldBottom (INT): height of the field label in pixels
ToolTip (INT): Tooltip

Valuesld (INT): reference to list fields
MaskFieldVal: form field value as CDATA

MaskListCtrl: structure containing information and data for a form field control

w W

enaio® Page 249

enaio® server-api enaio®

ColPos (INT): column position

Name (STRING): name

Type (STRING): Type

Length (INT): Length

ColWidth (INT): column width

Color (INT): Color

TextAlign (INT): text alignment

Valuesld (STRING): reference to list fields

MaskListCtrlVal: form field control value as CDATA

Page: structure containing the information about a page control (then again contains MaskFields)
ID (STRING): pagecontrol ID

Name (STRING): Pagecontrol name

Number (INT): indicates the position (‘page number") of a page

Iconld (INT): ID of the icon (from the DB table Osicons) which will be displayed on the
pagecontrol

w W W W W W W W W W W W W W

See also:

wfm.SaveMasks

wfm.LoadScript
Description:

This job returns a script from the database.
Parameter:

Organizationld (STRING): ID of the organization
Workflowld (STRING): ID of the workflow
Scriptld (STRING): ID of the script

Return:

(INT): 0 = job successful, otherwise error code
Return values:

ScriptCode (STRING): the requested script code

See also:

wfm.SaveScript

wfm.SaveEvent
Description:

This job creates an event for an activity. If the parameter Eventld is set, the values Params and
Description are reset for an existing event.

Parameter:

Eventld (STRING): ID of an event (must be empty if it is a new event)
enaio® Page 250

enaio® server-api enaio®

Workflowld (STRING): ID of the workflow model
Activityld (STRING): activity ID

EventType (INT): event type

Params (STRING): the ID of the button is transferred here for the event type '‘ButtonClick’
Description (STRING): event description
Organizationld (STRING): organization ID
ClientTypeld (String): ID of the used client type
Return:

(INT): 0: job successful, otherwise error code
Return values:

Eventld (STRING): event ID

Note:

Event types

1 = BeforeForward

2 = AfterForward

3 = BeforeForwardTo

4 = ButtonClick

5 = BeforeOpen

6 = AfterSignature

7 = BeforeCancel

8 = SimulateMaskEdit

10000 = StartActivity

10001 = EndActivity

10002 = BeforeStartSubProc

10003 = PersonalizeWorkltem

10004 = GetWorkltemParams

w W W W W W W W W W W W W

See also:

wfm.GetEvents, wim.DeleteEvent, wfm.SaveScript, wfm.SetEventScriptRelation

wfm.SaveMasks
Description:

This job saves changes or multiple forms including substructures (fields, ListCtrlCols, catalogs).
Parameter:

Organizationld (STRING): ID of the organization

Workflowld (STRING): ID of the workflow model

Masks (BASE64): Structure containing the masks to be saved (XML format)

enaio® Page 251

enaio® server-api

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Organizationld (STRING): ID of the organization

Workflowld (STRING): ID of the workflow model

Masklds (STRING): comma-separated ID list of masks that could not be saved
Example:

Structure of masks

enaio®

<Masks>

<Mask ld=""" ModState=""" />

<!--for O=MODSTATE_UNMODIFIED, 3=MODSTATE_DELETED -->
<l--or-->

<Mask Id=""" ModState=""' Name=""" Flags=""" FrameWidth=""" FrameHeight=""

<I--for 1=MODSTATE_CHANGED, 2=MODSTATE_NEW-->

<MaskField Id=""" ModState=""" />

<I--for O=MODSTATE_UNMODIFIED, 3=MODSTATE_DELETED-->

<MaskField Id=""" ModState=""" Name=""" InternalName=""" FieldName="""
TabOrder=""" DataType=""" InpLen=""" Init=""" Flags=""" Flagsl=""
Flags2=""" InpLeft=""" InpTop=""" InpRight=""" InpBottom=""
FieldLeft=""" FieldTop=""" FieldRight="" FieldBottom=""" ToolTip="""
Valuesld=""">

<I-—for 1=MODSTATE_CHANGED, 2=MODSTATE_NEW-->

<MaskFieldval Id=""" ModState=""'>

<I[CDATAL 11>

</MaskFieldval>

</MaskField>

</Mask>

</Masks>

>

wfm.SaveScript
Description:

This job saves a script or creates a new one (Action = 2).
Parameter:

Organizationld (STRING): ID of the organization
Workflowld (STRING): ID of the workflow

ID (STRING): ID of the script

Name (STRING): script Name

Description (STRING): short description of the script
Action (INT): action to be executed

§ 1 = the existing script will be overwritten

§ 2 =anew script will be created

ScriptCode (STRING): script code

Type (INT): script type

§ 1=-eventscript

§ 2 =global server script

enaio® Page 252

enaio® server-api

§ 3 =global client script

Return:

(INT): 0 = job successful, otherwise error code
Return values:

Scriptld (STRING): ID of the script

See also:

wfm.SaveEvent, wifm.SetEventScriptRelation

wfm.SetEventScriptRelation
Description:

This job links an event to a script.

Parameter:

Organizationld (STRING): ID of the organization
Workflowld (STRING): ID of the workflow
Eventld (STRING): event ID

Scriptld (STRING): Script ID

Action (INT): action to be executed with the specified parameters

§ 1=create link

§ 2 =delete link

Return:

(INT): 0 = job successful, otherwise error code
See also:

wfm.SaveScript, wfm.SaveEvent

Administration and History Administration

Administration
wfm.AdminDeleteStatisticReportConfigs

wfm.AdminDeleteStatisticReports

wfm.AdminDeleteProcesses
wfm.AdminGetActivityVariables
wfm.AdminGetLocklInfo

wfm.AdminGetProcessActivities
wfm.AdminGetProcessList
wfm.AdminGetProcessListByRole
wfm.AdminGetProcessListByUser
wfm.AdminGetProcessLocks

w w W W W W W W W W W

wfm.AdminGetProcessReport

enaio® Page 253

enaio®

enaio® server-api enaio®

Wfm.AdminGetStatisticReportConfigs
wfm.AdminGetStatisticReportData
wfm.AdminGetStatisticReports

wfm.AdminGetRoleProcesses

wfm.AdminGetUserProcesses

wfm.AdminGetWorkerqueue
wfm.AdminGetWorkflowL st
wfm.AdminReleasel ock
wfm.AdminRequestStatisticReport

wfm.AdminResumeActivity

wfm.AdminResumeProcess
wfm.AdminRollbackProcess
wfm.AdminSaveActivityVariables

wfm.AdminSaveStatisticReportConfig

wfm.AdminSuspendActivity

wfm.AdminSuspendProcess

wfm.AdminTerminateActivity

w W W W W W W W W W W W W W W W W W

wfm.AdminTerminateProcess

wfm.AdminDeleteStatisticReportConfigs

Description:

This job deletes all specified report configurations.

Parameter:

Organizationld (STRING): ID of the organization in which the report configurations are located
Configlds (STRING): comma-separated list of report configuration GUIDs to be deleted
Return:

(INT): 0 = job successful, otherwise error code

Return values:

none

§ Seealso:

§ Wifm.AdminGetStatisticReportConfigs, wfm.AdminSaveStatisticReportConfig

wfm.AdminDeleteStatisticReports
Description:

This job deletes all specified statistics reports.
Parameter:
Reportlds (STRING): comma-separated list of report GUIDs to be deleted

enaio® Page 254

enaio® server-api enaio®

Return:
(INT): 0 = job successful, otherwise error code
Return values:

none

wfm.AdminDeleteProcesses
Description:

This job deletes all specified workflow processes. If documents which were created during the workflow
process and not yet in the enaio® system are contained in the workflow file, they are inserted in the
filing tray of the enaio® client of the job executor. Before a process can be deleted, it must be stopped
using the job wfm.AdminSuspendProcess.

Parameter:

Organizationld (STRING): GUID of the organization to which the processes belong
Processes (STRING): comma-separated list of process GUIDs, which will be deleted
Return:

(INT): 0 = job successful, otherwise error code

Return values:

Processes (STRING): comma-separated list of process GUIDs which could not be deleted
See also:

wim.AdminGetProcessList, wim.GetOrganizations,

wim.AdminSuspendProcess

wfm.AdminGetActivityVariables
Description:

This job returns the IDs, names, structure and values of all workflow variables for an activity in XML
format.

Parameter:

RActivityld (STRING): instance ID of an activity

Return:

(INT): 0 = job successful, otherwise error code

Return values:

DataFields (BASE64): list with information on activity variables in XML format
Example:

Structure of DataFields

<DataFields>

<DataField 1d=""72FA13878B7C4744BB33C58B5AAFF5F0" Name="wfProtocol"'>
<I[CDATAL

<WFvar>

<List Typeld=""75FCEF515EDE4CF5A1BA8BDEQ4FD26023" ></List>

<Types>

enaio® Page 255

enaio® server-api

enaio®

<Type |d=""75FCEF515EDE4CF5A1BA8DE94FD26023"">
<Record>

<Member Name="'date''><STRING/></Member>
<Member Name=""time''><STRING/></Member>
<Member Name="'activity''><STRING/></Member>
<Member Name="'user''><STRING/></Member>
<Member Name="'log"'><STRING/></Member>
</Record>

</Type>

</Types>

</WFVar>

11>

</DataField>

<DataField 1d="4170579B168642BOE8A172BC73459" Name="'Testvariable'>

<I[CDATAL

<WFVar>

<String>Here is a string.</String>
<Types></Types>

</WFVar>

11>

</DataField>

</DataFields>

Note:
Detailed description of DataFields
§ DataField
& ID (STRING): GUID of the variables
§ Name (STRING): name of the variables
§ CDATA: structure and values of variables

See also:

wim.AdminGetProcessActivities, wfim.AdminSaveActivityVariables

wfm.AdminGetProcessActivities
Description:

This job returns all activities for a process.
Parameter:

Processld (STRING): GUID of the process
Return:

(INT): 0 = job successful, otherwise error code

Return values:

Activities (BASE64): contains requested information in XML format

Example:

Structure of Activities

<Activities>

<Activity>

<Name></Name>

<ld></Ild>
<RActivityld></RActivityld>
<CreationTime></CreationTime>

enaio® Page 256

enaio® server-api

enaio®

<Owner></0wner>
<Ownerld></Ownerld>
<AccessTime></AccessTime>
<EndTime></EndTime>
<ReminderTime></ReminderTime>
<ReminderState></ReminderState>
<State></State>
<ClosureTime></ClosureTime>
<Workltem></Workltem>

<LoopCount></LoopCount>
<ExecutionPoints></ExecutionPoints>

<RLoopld></RLoopld>

<ActivityNo></ActivityNo>

</Activity>
</Activities>

Note:

Detailed description of Activities

8 Activity: structure containing all information on the activity

§

w W W W W W W W W W

enaio®

Name (STRING): Activity name
Id (STRING): GUID of the activity (from the workflow model)
RActivityld (STRING): instance ID of the activity
CreationTime (LONG): creation time of the activity on the server
Owner (STRING): owner who has personalized the activity
Ownerld (STRING): owner ID
AccessTime (LONG): time when the activity was last accessed
EndTime (LONG): time when the activity ended
ReminderTime (LONG): Reminder time
ReminderState (LONG): reminder status (1 = reminder time exceeded, otherwise 0)
State (LONG): Activity status
§ 0x1 = the activity has been initialized
0x2 = the activity has been started (e.g. variables have been created).
0x4 = the start activity event has been executed
0x8 = the end activity event has been executed
0x10=only with loops: the loop condition has been checked.
0x20=only with loops: the loop body is executed.
0x40=only with process steps: the process step is provided in the inboxes.
0x80=only with process steps: the process step is personalized.
0x100 = waiting until a closure is expired

w w W W W W W W W

been fully executed.

§ 0x800 = the following activities have been calculated and possibly also been created

§ 0x1000 = the activity is completed, no follow-up activities have been initiated

§ 0x2000 = the activity has been stopped by a user

Page 257

0x400 = the activity has been executed, e.g. a process step has been forwarded or a loop has

enaio® server-api enaio®

0x4000 = the activity is completed

0x8000=0nly with multi-instance activities: the activity has been created.
0x10000=only with ad hoc activities: the ad hoc activity has been created.
0x20000 = activity canceled

0x40000 = only with ad hoc activities: the ad hoc activity is executed.

w w W w W wW

0x10000000 = the activity has been stopped by the system due to an error
ClosureTime (LONG): closure time for the activity
Workltem (LONG): 1 -> activity visible in inboxes, otherwise 0

LoopCount (LONG): if it is a loop activity, the loop count is indicated here, otherwise 0

w W W wWw

ExecutionPoints (LONG): Execution points for job wfm.AdminRollbackProcess
§ 100 = Activity is created
§ 200 = Activity finished

§ RLoopld (STRING): instance ID of the surrounding loop, if none exists, the parameter is empty

§ ActivityNo (LONG): indicates at which position the activity in the process was created
See also:

wfm.AdminGetProcessList, wim.AdminGetActivityVariables

wfm.AdminGetProcessList
Description:

This job returns a list of all active processes for a workflow model.
Parameter:

Organizationld (STRING): ID of the organization

Workflowld (STRING): ID of the workflow model

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Processes (BASE64): list of all running processes in XML format
Example:

Structure of processes

<Processes>

<Process Id=""" Name=""" Subject=""" State=""" SuspendedActivity=""">
<Creation Userld=""" UserName=""" Time="""/>

<LastActivity ExecTime=""" Name=""" Id=""" Userld=""" UserName="""/>

</Process>

<Process Id=""" Name=""" Subject=""" State=""" SuspendedActivity=""">
<Creation Userld=""" UserName=""" Time="""/>

<LastActivity ExecTime=""" Name=""" Id=""" Userld=""" UserName="""/>

</Process>

</Processes>

Note:

Detailed description of Processes
enaio® Page 258

enaio® server-api enaio®

ID (STRING): ID of the process
Name (STRING): name of a process
Subject (STRING): Process hame
State (LONG): state of a process

w w W wWw

1 = INIT (process has been initialized)

2 =RUNNING (process is running)

4 = SUSPENDED (process was stopped -> is not supported, yet)

8 = ACTIVE (process is running and at least one activity is personalized)

16 = TERMINATED (process was canceled -> is not supported, yet)

32 = COMPLETED (process successfully completed)

64 = SYSSUSPENDED (process was stopped by engine e.g. due to an error in the event script)

w W W W W W W

§ SuspendedActivity (LONG): 1 — at least one activity of the process has been stopped, otherwise 0
§ Creation: structure which encapsulates information on the creation of the respective process

§ Userld (STRING): user ID of the creator

§ UserName (STRING): user name of the creator

§ Time (LONG): Creation time
§ LastActivity: structure which encapsulates information on the last use of the process

§ ExecTime (LONG): last execution time

§ Name (STRING): name of the last executed activity

§ ID (STRING): ID of the last executed activity

§ Userld (STRING): executor ID of the last activity

§ UserName (STRING): executor name of the last activity
See also:

wim.AdminGetWorkflowList, wfm.GetOrganizations, wim.AdminDeleteProcesses

wfm.AdminGetProcessListByRole
Description:

This job returns all processes for a role 1D which currently have a corresponding process step in the
inbox.

Parameter:

Organizationld (STRING): ID of the organization

Roleld (STRING): ID of the role

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Processes (BASE64): list of all process steps in the inbox in XML format

Example:

enaio® Page 259

enaio® server-api enaio®

Structure of processes

<Processes>

<Process Id=""" Name=""" Subject="" State=""'>

<Creation Userld=""" UserName=""" Time="""/>

<Activity CreationTime="" Name=""" Id=""" Owner=""" Ownerld=""'
ReminderTime=""" OwnerTime=""" WICreationTime=""" State =""/>
</Process>

</Processes>

Note:

Detailed description of Processes
8 ID (STRING): Process ID
8 Name (STRING): Process name
8 Subject (STRING): Process subject
§ State (LONG): state of a process
§ 1 =INIT (process has been initialized)
2 = RUNNING (process is running)
4 = SUSPENDED (process was stopped -> is not supported, yet)
8 = ACTIVE (process is running and at least one activity is personalized)
16 = TERMINATED (process was canceled -> is not supported, yet)
32 = COMPLETED (process successfully completed)
64 = SYSSUSPENDED (process was stopped by engine e.g. due to an error in the event script)

w W W W W W

§ Creation: structure which encapsulates information on the creation of the respective process
§ Userld (STRING): user ID of the creator
§ UserName (STRING): user name of the creator
§ Time (LONG): process creation time
§ Activity: structure which encapsulates information on the activity of the process
CreationTime (LONG): Creation time
Name (STRING): Activity name
ID (STRING): Activity ID
ReminderTime (LONG): reminder time (if 0, then no reminder time)
Owner (STRING): name of the user who has personalized the process step
Ownerld (STRING): ID of the user who has personalized the process step
OwnerTime (LONG): time when the process step was personalized
WiICreationTime (LONG): time when the process step was created in the inbox
State (LONG): Activity status
§ 0x1 = the activity has been initialized

w W w W W W W W W

§ 0x2 = the activity has been started (e.g. variables have been created).
§ 0x4 = the start activity event has been executed
§

0x8 = the end activity event has been executed
enaio® Page 260

enaio® server-api enaio®

§ 0x10=only with loops: the loop condition has been checked.

§ 0x20=only with loops: the loop body is executed.

§ 0x40=only with process steps: the process step is provided in the inboxes.

§ 0x80=only with process steps: the process step is personalized.

§ 0x100 = waiting until a closure is expired

§ 0x400 = the activity has been executed, e.g. a process step has been forwarded or a loop has
been fully executed.

§ 0x800 = the following activities have been calculated and possibly also been created

§ 0x1000 = the activity is completed, no follow-up activities have been initiated

§ 0x2000 = the activity has been stopped by a user

§ 0x4000 = the activity is completed

§ 0x8000=only with multi-instance activities: the activity has been created.

§ 0x10000=only with ad hoc activities: the ad hoc activity has been created.

§ 0x20000 = activity canceled

§ 0x40000 = only with ad hoc activities: the ad hoc activity is executed.

§ 0x10000000 = the activity has been stopped by the system due to an error

See also:

wfm.GetOrganizations, wfim.AdminGetRoleProcesses, wfm.AdminGetProcessActivities,
wim.AdminDeleteProcesses

wfm.AdminGetProcessListByUser
Description:

This job returns all processes for a user ID which currently have a corresponding process step in the
inbox.

Parameter:

Organizationld (STRING): Organization ID

Userld (STRING): User ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Processes (BASE64): contains requested information in XML format
Example:

Structure of processes

<Processes>

<Process Id=""" Name=""" Subject="" State=""'>

<Creation Userld=""" UserName=""" Time="""/>

<Activity CreationTime=""" Name=""" Id=""" ReminderTime=""
OwnerTime=""" WICreationTime=""" State="""/>

</Process>

</Processes>

enaio® Page 261

enaio® server-api

Note:

Detailed description of Processes
8 ID (STRING): Process ID
8 Name (STRING): Process name
8 Subject (STRING): Process subject
§ State (LONG): state of a process
§ 1 =INIT (process has been initialized)

w W W W W W

8 Creation: structure which encapsulates information on the creation of the respective process

2 =RUNNING (process is running)

4 = SUSPENDED (process was stopped -> is not supported, yet)

8 = ACTIVE (process is running and at least one activity is personalized)
16 = TERMINATED (process was canceled -> is not supported, yet)

32 = COMPLETED (process successfully completed)

64 = SYSSUSPENDED (process was stopped by engine e.g. due to an error in the event script)

§ Userld (STRING): user ID of the creator
§ UserName (STRING): user name of the creator

§ Time (LONG): process creation time

§ Activity: structure which encapsulates information on the activity of the process

w W W W W W W W W

§

w W W w W W w W

enaio®

CreationTime (LONG): Creation time

Name (STRING): Activity name

ID (STRING): Activity ID

ReminderTime (LONG): reminder time (if 0, then no reminder time)

Owner (STRING): name of the user who has personalized the process step
Ownerld (STRING): ID of the user who has personalized the process step
OwnerTime (LONG): time when the process step was personalized
WICreationTime (LONG): time when the process step was created in the inbox
State (LONG): Activity status

0x1 = the activity has been initialized

0x2 = the activity has been started (e.g. variables have been created).

0x4 = the start activity event has been executed

0x8 = the end activity event has been executed

0x10=only with loops: the loop condition has been checked.

0x20=only with loops: the loop body is executed.

0x40=only with process steps: the process step is provided in the inboxes.
0x80=only with process steps: the process step is personalized.

0x100 = waiting until a closure is expired

Page 262

enaio®

enaio® server-api

enaio®

§ 0x400 = the activity has been executed, e.g. a process step has been forwarded or a loop has

been fully executed.

0x1000 = the activity is completed, no follow-up activities have been initiated
0x2000 = the activity has been stopped by a user

0x4000 = the activity is completed

0x8000=0nly with multi-instance activities: the activity has been created.
0x10000=only with ad hoc activities: the ad hoc activity has been created.
0x20000 = activity canceled

0x40000 = only with ad hoc activities: the ad hoc activity is executed.

w W W W W W W W W

0x10000000 = the activity has been stopped by the system due to an error
See also:

wfm.GetOrganizations, wfm.AdminGetUserProcesses, wim.AdminGetProcessActivities,
wim.AdminDeleteProcesses

wfm.AdminGetRoleProcesses
Description:

This job returns all roles of a specific organization for which process steps exist in inboxes.
Parameter:

Organizationld (STRING): organization ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Roles (BASEG4): list of all roles in XML format

Example:

Role structure

0x800 = the following activities have been calculated and possibly also been created

<Roles>

<Role Id=""" Name=""" ProcessCount="""/>
<Role Id=""" Name=""" ProcessCount="""/>
</Roles>

Note:

Detailed description of Roles
8 Role: structure which merges information on roles and number of processes

§ ID (STRING): ID of the role

§ Name (STRING): role name

§ ProcessCount (LONG): number of processes for which process steps exist in inboxes
See also:

wfm.GetOrganizations

enaio® Page 263

enaio® server-api enaio®

wfm.AdminGetUserProcesses
Description:

This job returns all users of a specific organization for which process steps exist in inboxes.
Parameter:

Organizationld (STRING): organization ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Users (BASE64): list of all users in XML format

Example:

Structure of Users

<Users>

<User Ild=""" Name=""" ProcessCount="""/>
<User ld=""" Name=""" ProcessCount="""/>
</Users>

Note:

Detailed description of users

8 User: structure which merges information on a user and the number of processes
§ ID (STRING): User ID
§ Name (STRING): User name

§ ProcessCount (LONG): number of processes of the user for which process steps exist in the
inbox

See also:

wfm.GetOrganizations

wfm.AdminGetWorkflowList
Description:

This job returns all workflow models which are used (status ACTIVE/INUSE) and the number of
running processes in an organization.

Parameter:

Organizationld (STRING): organization ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Workflows (BASEG4): contains requested information in XML format
Example:

Structure of Workflows

| <Workflows>

enaio® Page 264

enaio® server-api enaio®

<Workflow Id=""" Name=""' ProcessCount="""/>
<Workflow Id=""" Name=""" ProcessCount="""/>
</Workflows>

Note:

Detailed description of Workflows
8 Workflow: structure which encapsulates information for a workflow model

§ 1d (STRING): ID of the workflow model

§ Name (STRING): name of the workflow model

§ ProcessCount (LONG): number of running processes for this workflow model
See also:

wfm.GetOrganizations, wfm.AdminGetProcessList

wfm.AdminRequestStatisticReport
description:

This job requires the creation of a new report for a given statistics report configuration.
Parameter:

Organizationld (STRING): Organization ID

Userld (STRING): ID of the user who executes the action

Configld (STRING): ID of the statistics report configuration

CompileTime (INT): earliest time at which the report is to be generated

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Reportld (STRING): report ID

Creatorld (STRING): ID of the user who has requested the report
CreatorName (STRING): name of the person object of the user

CreationTime (INT): timestamp (when has be report been created), if state = 0 or 1 it is the time when
the report has been requested, otherwise it is the time when it has been started to create the report

§ State (INT): report status
0 — report is requested
8 1 -reportis currently being generated

§ 2-—report generated

wfm.AdminResumeActivity
Description:

This job releases the activity for processing after it has been stopped.

enaio® Page 265

enaio® server-api enaio®

Parameter:

RActivityld (STRING): instance ID of the activity

Userld (STRING): ID of the user who executes the action
Return:

(INT): 0 = job successful, otherwise error code

Return values:

State (INT): Activity status after resume

See also:

wim.AdminSuspendActivity

wfm.AdminResumeProcess
Description:

This job releases a process for processing after it has been stopped. If only certain activities have been
stopped, they will also be continued.

Parameter:

Processld (STRING): ID of the process

Userld (STRING): ID of the user who executes the action
Return:

(INT): 0 = job successful, otherwise error code

Return values:

State (INT): Process status after resume

See also:

wim.AdminSuspendProcess

wfm.AdminRollbackProcess
Description:

This job resets a process to the specified activity and returns all process activities, which will be deleted.
With the 'ExecutionPoint’, the reset point for the activity will be specified. It can be reset to the activity
before it has been created or before it is ended. Before a process can be reset, it must be stopped with
the job wfm.AdminSuspendProcess.

Parameter:

RActivityld (STRING): Instanceld of the activity to which the process is to be reset
ExecutionPoint (INT): start point in the activity

8 100 = Activity is created

8 200 = Activity finished

DoRollback (INT): 0 = reset is not done; 1 = process is reset (RunningActivities is filled in both
options)

Return:

enaio® Page 266

enaio® server-api

(INT): 0 = job successful, otherwise error code

Return values:

enaio®

RunningActivities (BASE64): contains all activities that were deleted after reset (DoRollback = 1) or

would be deleted (DoRollback = 0)
Example:

Structure of RunningActivities

RunningActivity

<RunningActivity Id="" RActivityld=""" Name="" State=""" CreationTime="""/>
<RunningActivity Id="" RActivityld=""" Name="" State="" CreationTime="""/>
</RunningActivities>

Note:
Detailed description of RunningActivities
8 RunningActivity

§ ID (STRING): Activity ID from the workflow model
Ractivityld (STRING): instance ID of the activity
Name (STRING): Activity name
State (LONG): Activity status

wn W

§ CreationTime (LONG): creation time of the activity (timestamp)
See also:

wfm.AdminSuspendProcess

wfm.AdminSaveActivityVariables
Description:

This job saves workflow variables for a given instance ID of an activity in the database.
Parameter:

Userld (STRING): ID of the user who has performed the modification

RActivityld (STRING): instance ID of an activity

DataFields (BASE64): list with information on variables in XML format

Return:

(INT): 0 = job successful, otherwise error code

Example:

Structure of DataFields

<DataFields>
<DataField Id=""" ><![CData[]]></DataField>
<DataField Id=""" ><![CData[]]></DataField>
</DataFields>

Note:
Detailed description of DataFields

§ DataField: structure which encapsulates information about a workflow variable

enaio® Page 267

enaio® server-api enaio®

§ ID (STRING): variable ID
§ CbData; variable value
See also:

wim.AdminGetProcessActivities, wim.AdminGetActivityVariables

wfm.AdminSaveReportConfig
Description:

This job saves (‘insert’ or ‘'update’) a report configuration.
Parameter:
Userld (STRING): ID of the user who has performed the modification

Configld (STRING): configuration ID. If the ID is not known to the server, a new configuration will be
created, if the ID exists already, the corresponding configuration will be changed. Only ConfigName,
FamilylDs and ConfigData are changed with this update.

ConfigName (STRING): configuration name
Organizationld (STRING): ID of the organization in which the configuration is located
ConfigType (LONG): configuration type
0 — statistics processes
1 — process details
ConfigData (STRING): XML description of the configuration
Return:
(INT): 0 = job successful, otherwise error code
Return values:
SaveType (INT): indicates type of save
0 —insert new / Insert
1 - change existing / Update
§ If SaveType = 0 other output parameters exist:
§ CreationTime (INT): creation time
Creatorld (STRING): ID of the user who has made the last change
See also:

wim.AdminDeleteStatisticReportConfigs, Wfm.AdminGetStatisticReportConfigs

wfm.AdminSuspendActivity
Description:

This job stops an activity. The activity cannot be processed.
Parameter:

RActivityld (STRING): instance ID of the activity

Userld (STRING): ID of the user who executes the action

enaio® Page 268

enaio® server-api enaio®

Return:

(INT): 0 = job successful, otherwise error code
Return values:

State (LONG): Activity status before the pause

§ 0Ox1 = the activity has been initialized

§ 0x2 = the activity has been started (e.g. variables have been created).
§ 0x4 = the start activity event has been executed
§ 0x8 = the end activity event has been executed
§ 0x10=only with loops: the loop condition has been checked.
§ 0x20=only with loops: the loop body is executed.
§ 0x40=only with process steps: the process step is provided in the inboxes.
§ 0x80=only with process steps: the process step is personalized.
§ 0x100 = waiting until a closure is expired
§ 0x400 = the activity has been executed, e.g. a process step has been forwarded or a loop has
been fully executed.
§ 0x800 = the following activities have been calculated and possibly also been created
§ 0x1000 = the activity is completed, no follow-up activities have been initiated
§ 0x2000 = the activity has been stopped by a user
§ 0x4000 = the activity is completed
§ 0x8000=only with multi-instance activities: the activity has been created.
§ 0x10000=only with ad hoc activities: the ad hoc activity has been created.
§ 0x20000 = activity canceled
§ 0x40000 = only with ad hoc activities: the ad hoc activity is executed.
§ 0x10000000 = the activity has been stopped by the system due to an error
See also:

wim.AdminResumeActivity

wfm.AdminSuspendProcess
Description:

This job stops a process. No activities of the process can be processed.
Parameter:

Processld (STRING): Process ID

Userld (STRING): ID of the user who executes the action

Return:

(INT): 0 = job successful, otherwise error code

Return values:

enaio® Page 269

enaio® server-api enaio®

State (INT): process status before the stop
0 — neutral value

1 — process has been initialized

2 — process running

3 — process stopped

4 — process active

5 — process is terminated

6 — process finished

w W W W W W W W

7 — the process was stopped by the system (an error occurred)
See also:

wim.AdminResumeProcess

wfm.AdminTerminateActivity
Description:

This job cancels an activity. Until now only multi instances can be canceled. If this is the last instance
of a multi-instance activity, the process will be resumed.

Parameter:

RActivityld (STRING): Activity ID

Userld (STRING): ID of the user who executes the action
Return:

none

wfm.AdminTerminateProcess
Description:

This job cancels a process. The process is deleted from the runtime tables of the workflow but remains
in the history and is marked as canceled there.

Parameter:

Processld (STRING): Process ID

Userld (STRING): ID of the user who executes the action
Return:

none

wfm.AdminGetLocklInfo
Description:

This job returns information on workflow database tables that were locked by the system.
Parameter:
Organizationld (STRING): ID of the organization

Return:

enaio® Page 270

enaio® server-api enaio®

(INT): 0 = job successful, otherwise error code

Return values:

Lockltems (BASE6G4): information about workflow database tables
Example:

Structure of Lockltems

<?xml version="1.0" encoding="1S0-8859-1" standalone="yes"?>
<Lockltems>

<Lockltem Id=""" Name=""" State=""' LockTime=""" Serverld="" Threadld="""/>
<Lockltem Id=""" Name="""' State=""" LockTime="" Serverld="" Threadld=""/>
</Lockltems>

Note:

Detailed description of Lockltems

Id (LONG): database table ID.

Name (STRING): database table name.

State (LONG): 1 = database table is locked, otherwise 0
LockTime (LONG): timestamp (when the table was locked)
Serverld (LONG): ID of the server that locked the table
Threadld (LONG): ID of the thread that locked the table

w wu W W W W

See also:

wim.AdminReleaseLock

wfm.AdminGetWorkerqueue
Description:

This job returns information about elements which are currently in the worker queue.
Parameter:

Organizationld (STRING): ID of the organization

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Workerqueueltems (BASE64): information on worker queue elements in XML format
Example:

Structure of Workerqueueltems

<?xml version="1_.0" encoding="1S0-8859-1" standalone="yes"?>

<Workerqueuel tems>

<Workerqueueltem Id=""" ActivityName=""" ProcessName=""" State="""
TargetState=""" CreationTime="" LockState=""" LockTime=""" Serverld="""/>
<Workerqueueltem Id=""" ActivityName=""" ProcessName=""" State=""
TargetState=""" CreationTime=""" LockState=""" LockTime=""" Serverld="""/>
</Lockltems>

Note:

Detailed description of Workerqueueltems

enaio® Page 271

enaio® server-api enaio®

ID (STRING): instance ID of the activity in the worker queue

ActivityName (STRING): activity name

ProcessName (STRING): name of the process to which the activity belongs

State (LONG): current status of the activity

TargetState (LONG): this status should be reached after processing by the Workerqueue
CreationTime (LONG): timestamp (when element was included in the workerqueue)
LockState (LONG): 1 —worker queue element is locked, otherwise 0

LockTime (LONG): timestamp (when worker queue element was locked)

w W W W W W W W W

Serverld (LONG): ID of the server that has locked worker queue element
See also:

wim.AdminReleaseLock

wfm.AdminGetProcessLocks
Description:

This job returns information about locked workflow processes.

Parameter:

Organizationld (STRING): ID of the organization

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Processes (BASE64): information on the locked workflow processes in XML format
Example:

Structure of processes

<?xml version="1_.0" encoding="1S0-8859-1" standalone="yes"?>

<Processes>

<Process ld=""" Name=""" State=""" LockTime=""" Serverld=""" Threadld="""/>
<Process ld=""" Name=""" State=""" LockTime=""" Serverld=""" Threadld="""/>
</Lockltems>

Note:

Detailed description of Processes

ID (STRING): Process ID

Name (STRING): Process name

LockTime (LONG): timestamp (when has the process been locked)
Serverld (LONG): ID of the server that has locked the process

Threadld (LONG): ID of the thread that has locked the process
See also:

w wu w W wWw

wfm.AdminReleaseLock

enaio® Page 272

enaio® server-api enaio®

wfm.AdminReleaselLock

Description:

This job unlocks the database of the specified type.

Parameter:

Locktype (LONG): indicates the lock type

8 1-locked processes will be released (Lockld must contain the corresponding process ID)

8 2 -—locked worker queue element will be released (LocklD must contain the corresponding worker
gueue item ID)

§ 3-locked database table will be unlocked (LockID then has to contain the corresponding table ID)
Lockld (STRING): see Locktype
Return:

(INT): 0 = job successful, otherwise error code
See also:
wfm.AdminGetWorkergueue, wfm.AdminGetProcessLocks,

wim.AdminGetLocklInfo

wfm.AdminGetProcessReport
Description:

This job provides information on the indicated workflow processes. Not to be confused with the
statistic process reports!

Parameter:

Processes (STRING): comma-separated list of process IDs

File (LONG): 1 = information about the WF file is also returned, otherwise 0

GlobalDataFields (LONG): 1 = information about global variables is also returned, otherwise 0
Return:

(INT): 0 = job successful, otherwise error code

Return values:

Processes (BASE64): information on workflow processes in XML format

Example:

Structure of processes

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<Processes>

<Process>

<1d>B216B6ACC46B4A33AFBOD6852D928A33</1d>

<Name>Global Variables Test - Parallel Process 2</Name>
<CreationTime>1143128816</CreationTime>
<EndTime>0</EndTime>

<UserName>Peter Mustermann</UserName>

<DataFields>

<DataField>

<|d>79FBB5E2F38B434DBF6C7507614CF740</1d>
<Name>TextVar02</Name>

enaio® Page 273

enaio® server-api enaio®

<Value><WFVar><String>Value 1</String><Types></Types></WFVar></Value>
</DataField>
</DataFields>
<Docs>

<Doc>

<ld>194</Id>
<Type>196608</Type>
</Doc>

</Docs>

</Process>
</Processes>

Note:

Detailed description of Processes

ID (STRING): Process ID

Name (STRING): Process name

CreationTime (LONG): timestamp (when the process was created)
EndTime (LONG): timestamp (when the process was completed)

UserName (STRING): process creator name

w w W W W W

DataFields: information on global variables
§ ID (STRING): variable ID

§ Name (STRING): variable name

§ Value: structure and value of variable

§ Docs: objects of the workflow file

§ ID (STRING): ID of the ECM object

§ Type (LONG): Object type

wfm.AdminGetStatisticReportConfigs
Description:

This job returns configurations for process reports (statistics etc.)
Parameter:

Organizationld (STRING): ID of the organization where the requested report configurations are
located

Creatorld (STRING): ID of the configuration creator. Can be empty. If the ID has been set, only
configurations with this CreatorID will be returned.

Userld (STRING): ID of the calling user. Only configurations to which the user has access rights will be
returned.

ConfigTypes (STRING): comma-separated list of configuration types. Can be empty. If the parameter
has been set, only configurations with the indicated types will be returned.

0 — process statistics
1 — process details

Familylds (STRING): comma-separated list with IDs of workflow families. Can be empty. If the
parameter is not empty, only configurations will be returned which are at least assigned to one of the
indicated families.

enaio® Page 274

enaio® server-api enaio®
RespectRights (LONG): the flag indicates whether only report configurations are returned, whose
reports the user can request and view.

0 — user receives report configuration independently of permissions

1 — user receives report configuration according to permissions

Return:

(INT): 0 = job successful, otherwise error code

Return values:

ReportConfigs (BASE64): information about the requested report configurations in XML format
Example:

Structure of ReportConfigs

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<ReportConfigs>

<ReportConfig Configld=""" ConfigName=""" CreationTime=""" Creatorld="" CreatorName="""
ConfigType=""">

<ConfigData><![CDATA[]]</CondigData>

</ReportConfig>

<ReportConfig Configld=""" ConfigName=""" CreationTime="" Creatorld="" CreatorName="""
ConfigType=""">

<ConfigData><![CDATA[]]</Condigbata>

</ReportConfig>

</ReportConfigs>

Note:

Detailed description of ReportConfig

8 Configld (BSTR): configuration ID

8 ConfigName (STRING): configuration name

8 CreationTime (LONG): timestamp (when the configuration was created)

8 Creatorld (STRING): user ID of the configuration creator

8 CreatorName (STRING): name of the person object corresponding to the user
8 ConfigType (LONG): configuration type

0 — statistics processes

1 — process details

§ ConfigData CDATA section (XML): configuration as XML description

§ See also:

§ wfm.AdminDeleteStatisticReportConfigs, wfm.AdminSaveStatisticReportConfig

wfm.AdminGetStatisticReportData

Description:

This job returns data for an already generated statistics report.
Parameter:

Reportld (STRING): report ID

enaio® Page 275

enaio® server-api enaio®
Userld (STRING): ID of the calling user. Only data to which the user has the appropriate rights will be
returned.

Return:

(INT): 0 = job successful, otherwise error code

Return values:

File list: name and path of the XML file with the data of the statistics report

wfm.AdminGetStatisticReports
description:

Returns the available reports for a statistics report configuration.
Parameter:

Organizationld (STRING): ID of the organization

Configld (STRING): ID of the statistics report configuration

Userld (STRING): ID of the calling user. Only data to which the user has the appropriate rights will be
returned.

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Reports (BASE64): information on the requested reports in XML format
Example:

Report structure

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<Reports>

<Report Reportld=""" CreationTime="" Creatorld=""" CreatorName=""" State=""'/>
<Report Reportld=""" CreationTime="" Creatorld=""" CreatorName=""" State=""'/>
</Reports>

Note:
Detailed description of Report
§ Reportld (STRING): report ID

8 CreationTime (LONG): timestamp (when has the report been created), if state = 0 or 1 it is the time
when the report has been requested, otherwise it is the time when the creation has been started

8 Creatorld (STRING): userID of the report creator

8 CreatorName (STRING): name of the person object corresponding to the user
§ State (LONG): report status

0 — report is requested

8 1 -reportis currently being generated

§ 2-—report generated

enaio® Page 276

enaio® server-api enaio®

History Administration
wfm.GetHistActivitiesByProcess
wfm.GetHistEntries
wfm.GetHistProcessL ist
wfm.GetHistTimerEntries

wfm.GetHistTimersByProcess
wfm.GetHistVariablesByHistEntry
wfm.GetHistWorkflowList
wfm.GetHistWorkltemRelActivitiesByProcess
wfm.GetHistWorkltemRelEntriesByActivity
wfm.GetHistWorkltemRelUsersByProcess
wfm.GetHistWorkltemRelEntriesByUser

w w W W W W W W W W w

wfm.GetHistActivitiesByProcess
Description:

This job determines all activities for a historic process.

Parameter:

Processld (STRING): history process ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Activities (BASE64): contains the requested activities in XML format
Example:

Structure of Activities

<Activities>

<Activity RActivityld="3A25AFD5CBD9B246" Name="'Stepl"™ EntryNo='"10"/>
<Activity RActivityld="51BBA8B5AAA1D471" Name="'StartActivity" EntryNo="5"/>
<Activity RActivityld="1A8E439C131AADF2B" Name="EndActivity" EntryNo='"21"/>
</Activities>

Note:
Detailed description of Activity
8 Activity: structure characterizing an activity instance
§ RActivityld (STRING): Instance ID of the activity
§ Name (STRING): Activity name
§ EntryNo (LONG): reflects the chronological order
See also:
wfm.GetHistProcessList, wfm.GetHistEntries

enaio® Page 277

enaio® server-api enaio®

wfm.GetHistEntries
Description:

This job returns all performed actions for a history activity or a history process. When calling a job it
has to be guaranteed that only one of the two parameters is set.

Parameter:

Processld (STRING): hist. process ID

RActivityld (STRING): hist. instance ID of the activity

Return:

(INT): 0 = job successful, otherwise error code

Return values:

HistoryEntries (BASE64): contains the requested actions in XML format
Example:

Structure of HistoryEntries

<HistoryEntries>

<HistoryEntry Histld=""__" EntryNr=""__" Processld=""_." RActivityld="__"
HistType="__" Time="__" Organisationld=""__." Userld="._" UserName=""__"
Serverld=".." ServerName="__"/>

<HistoryEntry Histld=".." EntryNr="__" Processld="_." RActivityld="_."
HistType="_." Time=".." Organisationld="_." Userld=".." UserName="._."
Serverld="__" ServerName="__"/>

</HistoryEntries>

Note:

Detailed description of HistoryEntries

§ Histld (STRING): ID of the hist. entry

§ EntryNo (LONG): entry number reflects the chronological order.
8 Processld (STRING): process ID

8 RActivityld (STRING): instance ID of the activity (only set when called via parameter RActivitylD)
§ HistType (LONG): type of the hist. entry

1 = PREPAREPROCESS

2 = STARTPROCESS

3 =ENDPROCESS

4 = PREPAREACTIVITY

5=STARTACTIVITY

6 = ENDACTIVITY

7= COPYACTIVITYVARIABLES

8 = HALTACTIVITY

9 = REACTIVATEACTIVITY

10 = STARTWORKITEM

11 = PERSONALIZED

§ 12 = DEPERSONALIZED
enaio® Page 278

w W W W W W W W W W w

enaio® server-api

13 = SAVEWORKITEM

14 = ENDWORKITEM

15 = CREATETIMER

16 = CANCELTIMER

17 = REMIND

18 = DELAYED

19 = STARTSCRIPT

20 = ENDSCRIPT

21 = SYSSUSPEND

22 = SETACTIVITYPERFORMER
§ Time (LONG)

§ Organisationld (STRING)
§ Userld (STRING)

§ UserName (STRING)
§

§

w w W W W W W W W W

Serverld (STRING)
ServerName (STRING)
See also:

wim.GetHistActivitiesByProcess, wfm.GetHistProcessList, wfm.GetHistVariablesByHistEntry

wfm.GetHistProcessList
Description:

This job determines all processes for a historic workflow model.
Parameter:

Organizationld (STRING): ID of the organization

HistWorkflowld (STRING): history 1D of the model

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Processes (BASE64): contains the requested processes in XML format
Example:

Structure of processes

enaio®

<Processes>

<Process Id="".." Name="_." FinalSubject=""_." UserName="_." CreationTime=""_."
EndTime=""_."/>

<Process Id=""_._" Name="__." FinalSubject=""__." UserName="__" CreationTime=""__"
EndTime="__"/>

</Processes>

Note:

Detailed description of Processes

enaio® Page 279

enaio® server-api enaio®

ID (STRING): Process ID

Name (STRING): Process name

FinalSubject (STRING): final subject of the process
UserName (STRING): process creator name
CreationTime (STRING): creation time of the process
EndTime (STRING): end time of the process

w W W W W W

See also:

wim.GetHistWorkflowList, wfm.GetHistActivitiesByProcess, wfm.GetHistEntries,
wfm.GetHistTimersByProcess

wfm.GetHistTimerEntries
Description:

This job returns all actions (historic entries) for a reminder/closure period.
Parameter:

Timerld (STRING): timer ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

TimerEntries (BASE64): contains the requested actions in XML format
Example:

structure of TimerEntries:

<TimerEntries>

<TimerEntry Histld="__" EntryNr="__"" Processld="._" RActivityld="__"
HistType="__" Time="__" Organisationld=""__." Userld="_._" UserName=""__"
Serverld="_._" ServerName="_._"/>

</TimerEntries>

Note:

Detailed description of TimerEntries

§ Histld (STRING): hist. ID

EntryNo (LONG): entry number (reflects the chronological order)
Processld (STRING): process ID

RActivityld (STRING): instance ID of the activity
HistType(LONG): type of the hist. entry

§ 15=CREATETIMER

§ 16 = CANCELTIMER

§ 17 =REMIND

§ 18 =DELAYED

§ Time (LONG): entry creation time

§ Organizationld (STRING): Organization ID

w w W W

enaio® Page 280

enaio® server-api enaio®

Userld (STRING): User ID

UserName (STRING): name of the user who has personalized the activity
Serverld (STRING): server ID

ServerName (STRING): Name of the server

w w W wWw

See also:

wim.GetHistTimersByProcess

wfm.GetHistTimersByProcess
Description:

This job returns all reminder/closure periods for a historic process.

Parameter:

Processld (STRING): hist. process ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Timers (BASE64): contains the requested reminder/closure periods in XML format
Example:

Structure of Timers

<Timers>

<Timer Timerld="_." Processld=".." FromActivityld="._" FromActivityName="__"
ToActivityld=".." ToActivityName=""__" TimerType=""_." DestinationType=""_."
DestinationTime="_." LoopType=".."/>

</Timers>

Note:

Detailed description of Timers

Timerld (STRING): ID of the reminder/closure period

Processld (STRING): process ID

FromActivityld (STRING): ID of the activity (the period is valid starting with this activity)
FromActivityName (STRING): name of the activity (the period is valid starting with this activity)
ToActivityld (STRING): ID of the activity (the period is valid until this activity)

ToActivityName (STRING): name of the activity (the period is valid until this activity)
TimerType (LONG): Period type

§ 0=closure period

w W W W W W W

§ 1 =reminder time
§ DestinationType (LONG):
§ 0=TIMER_REFERENCES_START_OF ACTIVITY
§ 1=TIMER_REFERENCES_END_OF ACTIVITY
§ DestinationTime (LONG): indicates when the target has to be reached

§ LoopType (LONG): 0 is always returned

enaio® server-api

See also:

wfm.GetHistProcessList, wim.GetHistTimerEntries

wfm.GetHistVariablesByHistEntry
Description:

This job returns the workflow variables for a history entry.

Parameter:

Histld (STRING): ID of the history entry

Return:

(INT): 0 = job successful, otherwise error code

Return values:

DataFields (BASE64): contains the requested history variables in XML format
Example:

Structure of DataFields

enaio®

<DataFields>

<DataField 1d=""123.." Name="'strTest'>
<I[CDATA[I am a string]]l>
</DataField>

<DataField ld="""" Name=""">
<I[CDATA[11>

</DataField>

</DataFields>

Note:

Detailed description of DataFields

8 ID (STRING): variable ID

8 Name (STRING): name of the variables

§ CDATA: value and structure of the variables
See also:

wfm.GetHistEntries

wfm.GetHistWorkflowList
Description:

This job returns all workflow models in the history administration and the number of processes started

by the workflow model.

Parameter:

Organizationld (STRING): organization ID
Return:

(INT): 0 = job successful, otherwise error code
Return values:

Workflows (BASE64): contains the requested actions in XML format

enaio® Page 282

enaio® server-api enaio®

Example:

Structure of Workflows

<Workflows>

<Workflow I1d=""18268F5E1F532" HistWorkfowld="04DCOD15A62A4" Name=""test"
ProcessCount="3" Version="70" Familyld="0774DCOD15A62A4"

Fami lyName=""testfam"/>

<Workflow 1d=""39418268F5532" HistWorkfowld="0BFB9FF2D225E7" Name=""test"
ProcessCount="1" Version="83" Familyld="T0774DCOD15A62""

Fami lyName=""testfamily" />

</Workflows>

Note:

Detailed description of Workflows

ID (STRING): ID of the workflow model

HistWorkfowld (STRING): history ID of the workflow model

Name (STRING): name of the workflow model

ProcessCount (LONG): indicates how often the workflow model was started
Version (LONG): version number of the workflow model

Familyld (STRING): GUID of the associated workflow family

Familyld Name(STRING): GUID of the associated workflow family

w W w W W W W

See also:

wfm.GetOrganizations, wfm.GetHistProcessList

wfm.GetHistWorkItemRelActivitiesByProcess
Description:

This job returns all activities which were put into an inbox for a historical process, i.e. all activities
which were edited by a user.

Parameter:

Processld (STRING): hist. process ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Activities (BASE64): contains the requested activities in XML format
Example:

Structure of Activities

<Activities>

<Activity RActivityld="2D0131F8C0" Name='Check request' EntryNo="17"/>
<Activity RActivityld="32BAE" Name="Forward request' EntryNo="9"/>
</Activities>

Note:

Detailed description of Activities
8 RActivityld (STRING): instance ID of the activity

enaio® Page 283

enaio® server-api

§ Name (STRING): Activity name

§ EntryNo (LONG): entry number reflects the chronological order.
See also:

wfm.GetHistProcessList, wfm.GetHistWorkltemRelEntriesByActivity

wfm.GetHistWorkltemRelEntriesByActivity
Description:

This job returns all history entries for the specified process step.

Parameter:

RActivityld (STRING): instance ID of the activity

Return values:

HistWorkltemRelEntries (BASE64): contains the requested entries in XML format
Example:

Structure of HistWorkltemRelEntries

enaio®

<HistWorkltemRelEntries>
<HistWorkltemRelEntry RActivityld=""" ActivityName=""" Organizationld="""

Userld="" UserName=""" Reason=""' HistType=""" Histld=""" EntryNo=""" Time=""

</HistWorkltemRelEntries>

/>

Note:

Detailed description of HistWorkltemRelEntries

RActivityld (STRING): instance ID of the activity

ActivityName (STRING): Activity name

Organizationld (STRING): Organization ID

Userld (STRING): ID of the user who had the activity in his inbox
UserName (STRING): User name

Reason (LONG): reason why the user had the activity in his inbox

w W w W W W

§ 0 =setup as participant
§ 1 =was assigned to the user based on a reminder time
§ 2 =assigned (HistType = 11) / removed (HistType = 12) by the administrator
§ 3 =assigned (HistType = 11) / removed (HistType = 12) by a script
§ HistType (LONG): type of the hist. entry
§ 10=STARTWORKITEM
§ 11 =PERSONALIZED
§ 12 = DEPERSONALIZED
§ Histld (STRING): ID of the hist. entry
§ EntryNo (LONG): reflects the chronological order
§ Time (LONG): creation time of the entry

See also:

enaio® Page 284

enaio® server-api enaio®

wim.GetHistWorkltemRelActivitiesByProcess

wfm.GetHistWorkltemRelUsersByProcess
Description:

This job returns all users resp. roles for which process steps of the specified history process were
inserted into their inboxes.

Parameter:

Processld (STRING): hist. process ID

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Users (BASE64): contains the requested user in XML format
Example:

Structure of Users

<Users>

<User Userld="_.." UserName=""_."/>
<User Userld="_.." UserName=""_."/>
</Users>

Note:

Detailed description of Workflows

§ Userld (STRING): ID of the user/role

§ UserName (STRING): name of the user/role
See also:

wfm.GetHistProcessList

wfm.GetHistWorkltemRelEntriesByUser
Description:

This job returns all activities processed by the specified user and the respective history entries of the
specified history process.

Parameter:

Processld (STRING): hist. process ID

Userld (STRING): User ID

Return values:

HistWorkltemRelEntries (BASE64): contains the requested information in XML format
Example:

Structure of HistWorkltemRelEntries

<HistWorkltemRelEntries>

<HistWorkltemRelEntry RActivityld=""" ActivityName=""" Organizationld=""
Userld=""" UserName=""" Reason=""" HistType=""" Histld=""" EntryNo=""" Time="""/>
</HistWorkltemRelEntries>

enaio® Page 285

enaio® server-api enaio®

Note:

Detailed description of HistWorkltemRelEntries

RActivityld (STRING): instance ID of the activity

ActivityName (STRING): Activity name

Organizationld (STRING): Organization ID

Userld (STRING): ID of the user who had the activity in his inbox
UserName (STRING): User name

Reason (LONG): reason why the user had the activity in his inbox

w wu W W W W

§ 0 =setup as participant
§ 1 =was assigned to the user based on a reminder time
§ 2 =assigned (HistType = 11) / removed (HistType = 12) by the administrator
§ 3 =assigned (HistType = 11) / removed (HistType = 12) by a script
§ HistType (LONG): type of the hist. entry
§ 10=STARTWORKITEM
§ 11 =PERSONALIZED
§ 12 =DEPERSONALIZED
§ Histld (STRING): ID of the hist. entry
§ EntryNo (LONG): reflects the chronological order
§ Time (LONG): creation time of the entry
See also:

wfm.GetHistProcessList

Other jobs
wfm.ConvertExportFile

wfm.DeleteSysClienttypes

wfm.Export
wfm.GetSysClienttypes

wfm.GetVersionInfo
wfm.GetWFMInfo
wfm.Import
wfm.InsertSysClienttypes
wfm.GetProjectList

w w W W W W W W W W

AdhocConfigTemplate

wfm.ConvertExportFile
Description:

This job converts an export file into the current format (e.g. from 4.20 to 4.50). The export file must be
included with the job. The result file will then be returned along with the response.

enaio® Page 286

enaio® server-api enaio®

Parameter:

File list: name and path of the workflow export file to be converted
Return:

(INT): 0 = job successful, otherwise error code

Return values:

File list: name and path of the converted workflow export file

wfm.Export
Description:

This job exports the organizational structure, workflow projects and/or workflows.

Parameter:

Organizationld (STRING): organization ID from which the export is to take place

OrgDoExport (INT): flag indicates whether organizational data will be exported, too (1=yes, 0=no)

WHEFProjectTree (BASE64): the structure indicates which projects and workflow models are to be
exported (XML format)

ReportConfigDoExport (INT): flag indicates whether the report configuration of the organization are
to be exported

ReportConfiglds (String): comma-separated list of report configuration IDs which will be exported. If
the parameter ReportConfigDoExport = 1 and this list is empty, all configurations of the organization
are exported.

AdhocRoutingListTemplateDoExport (INT): flag indicates if routing list templates of the organization
are to be exported

AdhocRoutingListTemplatelds (String): comma-separated list of IDs of routing list templates to be
exported. If the parameter AdhocRoutingListTemplateDoExport = 1 and this list is empty, all routing
templates of the organization are exported.

Return:

(INT): 0 = job successful, otherwise error code
Return values:

File list: name and path of the export file
Example:

Structure of WFProjectTree

<WFProjectTree>

<WorkflowProject Id=""" CompleteExport=0>
<WorkflowProject Id=""">

<WorkflowProject Id=""" CompleteExport=0>
</Workflow ld=""">

</Workflow ld=""">

</WorkflowProject>

</WorkflowProject Id="" CompleteExport=1>
</WorkflowProject>

</WorkflowProject Id=""" CompleteExport=1>

enaio® Page 287

enaio® server-api enaio®

</WorkflowProject>

</WorkflowProject Id="" CompleteExport=1>
</Workflow ld=""">

</Workflow ld=""">

</WFProjectTree>

Note:
Detailed description of WFProjectTree

§ WorkflowProject: structure (may be cascaded) that indicates which workflow project (can also be a
workflow family) is to be exported

§ ID (STRING): ID of the workflow project

§ CompleteExport (LONG): this flag indicates whether all projects or workflows connected to the
project are to be exported. If it is set, the substructure does not need to be specified any further.

8 Workflow: structure indicating which workflow (which workflows) will be exported
§ ID (STRING): workflow ID

See also:

wfm.Import

wfm.GetVersioninfo
Description:

This job returns information on the version of the workflow engine.
Return:

(INT): 0 = job successful, otherwise error code

Return values:

EngineVersion (INT): specifies the major version of the engine e.g. 450

EngineSubVersion (INT): specifies the sub version of the engine e.g. 3

wfm.GetWFMInfo
Description:

This job returns information on a user (e.g. absence, WF user 1D) through the DRT user ID.
Parameter:

Requests (BASE64): contains a list of search requests in XML format

Return:

(INT): 0 = job successful, otherwise error code

Return values:

Requests (BASE64): contains responses to search requests in XML format

Example:

Structure of the input parameter Requests

|<Requests>

enaio® Page 288

enaio® server-api enaio®

<Request Userld=""" RequestType="""/>
<Request Userld=""" RequestType="""/>
</Requests>

Note:
Detailed description of the input parameter Requests
8 Userld (STRING): ID of the DRT user
8 RequestType (INT): flag for the search request type
§ 1= determine the ID of the active organization
§ 2 =determine if the DRT user if part of the active organization
§ 3 =determine the ID of the WF user for a DRT user ID
§ 4 =determine if the specified user is set to absent
Example:

Structure of the output parameter Requests

<Requests>

<Request Userld=""" RequestType=""" Value="""/>
<Request Userld=""" RequestType=""" Value="""/>
</Requests>

Note:
Detailed description of the output parameter Requests
8 Userld (STRING): ID of the DRT user
8 RequestType (INT): flag for the search request type
§ 1= determine the ID of the active organization
§ 2 =determine if the DRT user if part of the active organization
§ 3 =determine the ID of the WF user for a DRT user ID
§ 4 =determine if the specified user is set to absent
§ Value (INT): search request response
§ with RequestType = 2: 1 = DRT user contained in the organization, otherwise 0

§ with RequestType = 4: 1 = DRT user set to absent, otherwise 0

wfm.Import
Description:

This job imports an organization. Therefore a file is added to the job.
Parameter:
Input file: name and path of the file to be imported.

DolmportOrganization (INT): indicates whether organizational data is also to be imported (1=yes,
0=no)

DestOrganizationld (BASE64): if organizational data is to be imported, the target organization is
specified here. The parameter is left blank if a new organization should be created.

WorkflowProjects (BASE64): specifies the workflow projects, which are to be imported, in XML
format.

enaio® Page 289

enaio® server-api enaio®

Workflows (BASEG4): specifies the workflow models, which are to be imported, in XML format.

ReportConfigs (BASE64): specifies the report configurations, which are to be imported, in XML
format.

Templates (BASEG64): specifies the routing list templates, which are to be imported, in XML format.
Return:

(INT): 0 = job successful, otherwise error code

Return values:

ChangedOrganizations (STRING): comma-separated ID list of modified organizations

Example:

Structure of WorkflowProjects

<WorkflowProjects>

</WorkflowProject Id="" DestPrjld=""" DestOrgld=""" Overwrite=""
Completelmport="" OldParent=""">

</WorkflowProject Id="" DestPrjld="" DestOrgld=""" Overwrite=""
Completelmport="" OldParent=""">

</WorkflowProject Id="" DestPrjld="" DestOrgld=""" Overwrite=""
Completelmport="" OldParent=""">

</WorkflowProjects>

Note:

Detailed description of WorkflowProjects

§ ID (STRING): ID of the project in the import file
§ DestPrjld (STRING): ID of the parent project

8 DestOrgld (STRING): ID of the target organization. This attribute is not specified if a new
organization should be created on import and if the project will have this new organization as its
target.

§ Overwrite (INT): this flag indicates if an existing project with the same ID is to be overwritten.
Otherwise a new project with a new ID is created.

8§ Completelmport (INT): this flag indicates whether the entire substructure (projects/workflows) of
the project is to be imported. This does not then need to be listed.

8 OldParent (INT): this flag is only required if the parent workflow projects were copied (i.e. not
overwritten). If the flag was set, the project is written into the old WF project (whereby the
overwrite flag is taken into account) — if not, it is written into the created (copied) WF project. This
flag must always be set if the parent WF project is supposed to be overwritten.

Example:

Structure of Workflows

<Workflows>
</Workflow Id=""" DestFamld=""" DestOrgld=""" Overwrite=""" OldFamily=""">
</Workflow Id=""" DestFamld=""" DestOrgld=""" Overwrite=""" OldFamily=""">
</Workflow Id=""" DestFamld=""" DestOrgld=""" Overwrite=""" OldFamily=""">
</Workflows>

Note:
Detailed description of Workflows
§ ID (STRING): ID of the workflow in the import file

enaio® Page 290

enaio® server-api enaio®

DestFamld (STRING): ID of the target WFFamily

DestOrgld (STRING): ID of the target organization. This attribute is not specified if a new
organization should be created on import (see node description: organization) and if the model will
have this new organization as its target.

Overwrite (INT): this flag indicates whether an existing workflow with the same ID is to be
overwritten. Otherwise a new workflow with a new ID is created.

OldFamily (INT): this flag is only required if the parent workflow families was copied (i.e. not
overwritten). If the flag was set, the model is written into the old WF family (whereby the overwrite
flag is taken into account) — if not, it is written into the created (copied) WF family. This flag must
always be set if the parent WF family is supposed to be overwritten.

Example:

Structure of ReportConfigs

<ReportConfigs>

<ReportConfig Configld=""" Overwrite=""" DestOrgld="""/>
<ReportConfig Configld=""" Overwrite="" DestOrgld="""/>
<ReportConfig Configld=""" Overwrite="" DestOrgld="""/>
</ReportConfigs >

Note:

Detailed description of Workflows

§
§
§

Configld (STRING): ID of the configuration in the import file
DestOrgld (STRING): ID of the target organization.

Overwrite (INT): this flag indicates whether an existing configuration with the same ID is to be
overwritten. Otherwise a new configuration with a new ID is created.

See also:

wfm.Export

wfm.GetSysClienttypes
Description:

This job returns all client types defined for the system.

Return:

(INT): 0 = job successful, otherwise error code

Return values:

ClientTypes (Base64): list of all defined client types

Example:

Structure of Clienttypes

<ClientTypes>
<ClientType Id=""" Name=""'/>

<ClientType Id=""" Name="""/>

</Clienttypes>

Note:

Detailed description of client types

§

ID (STRING): GUID of the client type

enaio® Page 291

enaio® server-api

§ Name (STRING): name of the client type
See also:

wfm.InsertSysClienttypes

wfm.InsertSysClienttypes
Description:

This job has not been implemented yet. This job defines new client types.

Parameter:

Clienttypes (Base64): list of all defined client types
Return:

(INT): 0 = job successful, otherwise error code
Example:

Structure of Clienttypes

enaio®

<Clienttypes>

<Clienttype Id=""" Name=""'/>
<Clienttype Id=""" Name=""'/>

</Clienttypes>

Note:

Detailed description of Clienttypes

§ ID (STRING): GUID of the client type

§ Name (STRING): name of the client type
See also:

wfm.GetSysClienttypes

wfm.DeleteSysClienttypes
Description:

This job has not been implemented yet. This job deletes the specified client types.

Parameter:

ClientTypelds (STRING): comma-separated GUIDs of the client types which will be deleted

Return:
(INT): 0 = job successful, otherwise error code
See also:

wfm.GetSysClienttypes

wfm.GetProjectList
Description:

This job returns all workflow projects for an organization.

enaio® Page 292

enaio® server-api enaio®

Parameter:

Organizationld (STRING): GUID of the organization
Return:

(INT): 0 = job successful, otherwise error code
Return values:

Projects (Base64): list of all defined client types
Example:

Structure of Clienttypes

<Projects>

<Project Id=""" Name=""" Type=""' Creatorld="" CreationTime=""" Description=""/>
<Project Id=""" Name=""" Type=""' Creatorld=""" CreationTime=""' Description="""/>

</Projects>

Note:

Detailed description of Clienttypes

ID (STRING): project ID

Name (STRING): project name

Type (INT): 1 = root project, 2 = workflow project, 3 = workflow family
CreatorID (STRING): GUID of the creator

CreationTime (INT): Time of creation

Description (STRING): Description

w wu W W W W

wfm.AdhocConfigTemplate
Description:

This job is used to configure ad hoc templates for the workflow.
Parameter:

Userld (STRING): User ID

Orgld (STRING): instance of the activity

Action (Int): 1: saving a template, 2: deleting a template, 3: publishing a template, 4: personalizing a
template

Depending on the particular action, other parameters may be required:

1: saving a template

Templateld (String): template ID. Is empty if the template is saved for the first time.
TemplateName(String): template name

Public (Int): 0: this is a private template, 1: the template is public
Template(BASE64):

2: deleting a template

Templateld (String): template ID.

3: publishing a template

enaio® Page 293

enaio® server-api enaio®

Templateld (String): template ID
4: personalizing a template:
Templateld (String): template ID.
Return:

The return value depends on the selected action (Action(Int)):
1: saving a template

Templateld (String): template ID.
2: deleting a template

no return parameter

3: publishing a template

no return parameter

4. personalizing a template:

no return parameter

Example:

Structure of Template

<RoutingList 1d=""3294B433BFF6454D9C861B86B5A8AD5D""
Activityld="3294B433BFF6454D9C861B86B5A8AD5D" Expandable=""1"">

<Entries>

<Entry Nr="203" Expandable="1">

<ltem 1d=""99825B18A8334987935684FDA3D6A40D"
Activityld="6EE4490A48164A0FA6DC34A80099AF66" ActivityName="Create invoice"
ModelActivityName="Create invoice" Remark=""" Timerld=""" TimerDuration="""
TimerDurationType=""" Changeable="1" Deleteable="0">
<Objectlds></Objectslds>

</ltem>

</Entry>

<Entry Nr="253" Expandable="1">

<ltem Id=""E15594D692C14FDA9AFDE8SFAOA43F6E4"
Activityld="6EE4490A48164A0FA6DC34A80099AF67" ActivityName="Approve invoice BL"
ModelActivityName="Approve invoice"™ Remark="" Timerld=""" TimerDuration="""
TimerDurationType="" Changeable="1" Deleteable="0">
<Objectlds></0Objectslds>

</ltem>

<ltem Id=""C6DA9503CD874D69A9B703DOEO6A52ES"
Activityld="6EE4490A48164A0FA6DC34A80099AF67" ActivityName="Approve invoice GF"
ModelActivityName="Approve invoice" Remark="" Timerld=""" TimerDuration="""
TimerDurationType=""" Changeable="1" Deleteable="0">
<Objectlds></0Objectslds>

</ltem>

</Entry>

</Entries>

</RoutingList>

Note:

Detailed description of RoutingList

8 RoutingList: routing list with the following structure (or subsets of it)

8 1D (String): routing list ID. The value is set by the server and must not be changed.
8 Activityld (String): activity ID

enaio® Page 294

enaio® server-api enaio®

§ Expandable (Int): O: routing list cannot be expanded, 1: routing list can be expanded

§

wn

w W W W W W W W W

Entries: the structure combines entries of the routing list. An entry consists of multiple
elements which can be executed simultaneously.

Entry: describes an entry in the routing list.

No (Int): for relative sorting of entries within the routing list. The absolute values do not have
any influence on the client.

Expandable (Int): 0: entry cannot be expanded, 1: entry can be expanded

Item: describes an element of the routing list. This can be an activity, an executing person or a
deadline.

ID (STRING): for identification This ID must not be changed and must be identically sent for
all jobs. If an item was created by the client, the ID must be stated here.

Activityld (String): ID of the activity in the workflow model

ActivityName (String): activity name (does not necessarily have to match the name in the
workflow model).

ActivityModelName (String): ID of the activity in the workflow model
Timerld(String): ID of a reminder time

TimerName(String): name of the reminder time

TimerDuration(Int): timer duration

TimerDurationType(Int): 0: no period, 1: relative, 2: absolute

Changeable(Int): 0: no change possible, 1:The element can be changed by the client.
Deleteable(Int): 0: deletion not allowed, 1: element can be deleted

Remark (String): note on editing (Text)

Objectslds (String): list of editors' GUIDS (roles or persons), separated by comma

wfm.AdhocGetTemplateList
Description:

Returns multiple ad hoc templates for the specified user.

Parameter:

Userld

(STRING): User ID

Orgld (STRING): instance of the activity

Templateld (String): template ID. If this parameter is empty, all ad hoc templates are determined
which are visible for the user (= all public and personalized templates)

Return:

Templates (BASEG64): list of the determined ad hoc templates

Template: describes an ad hoc template

Templateld(String): ID of the ad hoc template

TemplateName(String): name of the ad hoc template

enaio®

Page 295

enaio® server-api enaio®

Public(int): 0: the template is not public, 1: the template is public

8 RoutingList: routing list with the following structure (or subsets of it)

§ ID (String): routing list ID. The value is set by the server and must not be changed.
§ Activityld (String): activity ID

§ Expandable (Int): O: routing list cannot be expanded, 1: routing list can be expanded

§ Entries: the structure combines entries of the routing list. An entry consists of multiple
elements which can be executed simultaneously.

§ Entry: describes an entry in the routing list.

§ No (Int): for relative sorting of entries within the routing list. The absolute values do not have
any influence on the client.

§ Expandable (Int): 0: entry cannot be expanded, 1: entry can be expanded

§ Item: describes an element of the routing list. This can be an activity, an executing person or a
deadline.

§ ID (STRING): for identification This ID must not be changed and must be identically sent for
all jobs. If an item was created by the client, the ID must be stated here.

§ Activityld (String): ID of the activity in the workflow model

§ ActivityName (String): activity name (does not necessarily have to match the name in the
workflow model).

ActivityModelName (String): ID of the activity in the workflow model
Timerld(String): ID of a reminder time

TimerName(String): name of the reminder time

TimerDuration(Int): timer duration

TimerDurationType(Int): 0: no period, 1: relative, 2: absolute

Changeable(Int): 0: no change possible, 1:The element can be changed by the client.
Deleteable(Int): 0: deletion not allowed, 1: element can be deleted

Remark (String): note on editing (Text)

w W W W W W W W W

Objectslds (String): list of editors' GUIDS (roles or persons), separated by comma
Example:

Structure of Templates

<Templates>

<Template Templateld=""" TemplateName=""" Public=""">

<RoutingList 1d=""3294B433BFF6454D9C861B86B5A8AD5D"
Activityld="3294B433BFF6454D9C861B86B5A8AD5D" Expandable=""1">

<Entries>

<Entry Nr="203" Expandable="1">

<ltem 1d=""99825B18A8334987935684FDA3D6A40D""
Activityld="6EE4490A48164A0FA6DC34A80099AF66" ActivityName="Create invoice"
ModelActivityName=""Create invoice" Remark=""" Timerld=""" TimerDuration="""
TimerDurationType=""" Changeable="1" Deleteable="0">
<Objectlds></0Objectslds>

</ltem>

</Entry>

<Entry Nr="253" Expandable="1">

<ltem Id="E15594D692C14FDA9AFDESFAOA43F6E4"
Activityld="6EE4490A48164A0FAG6DC34A80099AF67" ActivityName="Approve invoice BL"

enaio® Page 296

enaio® server-api enaio®

ModelActivityName="Approve invoice”™ Remark="" Timerld="" TimerDuration="""
TimerDurationType="" Changeable="1" Deleteable="0">
<Objectlds></0Objectslds>

</ltem>

<ltem |d=""C6DA9503CD874D69A9B703DOEOGAS2ES""
Activityld="6EE4490A48164A0FA6DC34A80099AF67" ActivityName="Approve invoice GF"
ModelActivityName="Approve invoice" Remark=""" Timerld=""" TimerDuration="""
TimerDurationType=""" Changeable="1" Deleteable="0">
<Objectlds></0Objectslds>

</ltem>

</Entry>

</Entries>

</RoutingList>

</Template>

</Templates>

Server-internal Jobs
The jobs listed here are server-internal and are therefore generally not called from the outside.

wfm.DBCommands

Description:

This job executes cached database commands. This job is generally not executed from the outside.
Parameter:

DBCommandsld (STRING): GUID of the database command to be executed in the database
command cache

Return:

(INT): 0 = job successful, otherwise error code

Batchlobs
The listed jobs are periodically executed by the workflow engine.

§ wfm.CheckJob
§ wfm.WorkerJob
§ wfm.WorkltemNoti

wfm.Checklob

Description:

This job verifies whether dunning or retention periods have expired and reacts accordingly. Activities
affected by retention periods are activated and the retention periods are removed from the database.
Activities affected by dunning periods are marked as delayed and have their defined action (send e-
mail message, forward to substitute) executed.

Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 297

enaio® server-api enaio®

wfm.WorkerJob
Description:

This job processes the activities queue. Activities are started or ended by this job.
Return:

(INT): 0 = job successful, otherwise error code

wfm.WorkltemNoti
Description:

This job sends the ServerJob 'ServerNotifyClients'. The job ServerNotifyClients informs all connected
clients about changes in the inbox.

Return:

(INT): 0 = job successful, otherwise error code

ServerCommunicationJobs

Jobs listed here serve the communication between different servers. Contrary to other jobs these jobs
are not executed by clients but by a (different) server.

§ wfm.ServerNotifyClients
§ wfm.ServerUpdateWorkflowModels
§ wfm.ServerUserAbsent

wfm.ServerNotifyClients
Description:

This job sends a message reporting the update of the inbox to the clients of all users who are contained
in the list of user IDs. If this list is empty, a message is sent to all connected clients.

Parameter:
UserGUIDs (STRING): comma-separated list of user GUIDs
Return:

(INT): 0 = job successful, otherwise error code

wfm.ServerUpdateWorkflowModels
Description:

This job deletes all listed workflow models from the workflow engine cache and sends a notification to
all attached operating systems: 4. DRT-Workflow_Editors.

Parameter:

Organizationld (STRING): GUID of the organization from which the models originate
Workflowlds (STRING): comma-separated list of workflow model GUIDs

Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 298

enaio® server-api enaio®

wfm.ServerUserAbsent
Description:

This job informs all attached operating systems 4. DRT-Workflow_Editors for which user the presence
status has changed.

Parameter:

Organizationld (STRING): GUID of the organization from which the models originate
Absentlds (STRING): comma-separated list of user GUIDs, which are present
Presentlds (STRING): comma-separated list of user GUIDs, which are absent

Return:

(INT): 0 = job successful, otherwise error code

Core Services

Core Services contain functions related to administration, licensing, session management, engine
administration and internal control. These are encapsulated by the application server core
(axsvckrn.exe). This makes it possible to execute basic administrative functions without loading
additional engines.

Namespaces
8 Administrations-Core-Services (Namespace adm)

8 Kernel-Core-Services (Namespace krn)

8 License-Core-Services (Namespace lic)

enaio® Page 299

enaio® server-api ‘ enaio®

Administration Core Services (Namespace adm)

In the 'adm' namespace exist functions used to administer system files and a few configuration tasks at
the server. This namespace is directly implemented by the kernel.

adm.CleanUpConfig

adm.CleanUpLog

adm.EnumServerGroups

adm.EnumServers

adm.GetServerFamilylnfo

adm.GetServersActivity

adm.GetSystemFile

adm.LogdirDeleteFiles

adm.LogdirDownloadFiles

adm.LogdirGetlnfo

w w W W W W W W W W W

adm.StoreSystemFile

adm.CleanUpConfig
Description:

This job looks for the specified configuration file and empties it.
Parameter:

Flags (INT): not currently supported
Types (INT): type of configuration file
1 = object definition file

2 =AS.cfg

4 = AsL.isten.dat

8 = AslmpExp.Cfg

16 = AsForm.Cfg

32 = AsCold.Cfg

4294967295 = all

w wu W W W W W

Versions (INT): file version
Return:

(INT): 0 = job successful, otherwise error code

adm.CleanUpLog
Description:

This job looks for the specified log files and removes them.
Parameter:

Flags (INT): not currently supported

enaio® Page 300

enaio® server-api

Type (INT): type of log files to be deleted

§ 1=FLW files
§ 2=ERRfiles
§ 4=LOG files
§ 8=REP files
§ 4294967295 = all

Days (INT): Days
Path (STRING): log directory path
Return:

(INT): 0 = job successful, otherwise error code

adm.EnumServerGroups
Description:

This job returns a list of all server groups.

Parameter:

Flags (INT): 0 = return value is Group[00..nn]; 1 = return values are Info and InfoType

Return values:

[Info] (STRING): MIME encoded buffer with information on the server group
[InfoType] (STRING): semicolon-separated names of values returned in Info
[Group[00..nn]] (STRING): semicolon-separated information on server group
8 D of the server group

8 Server group name

8 Description of the server group

Return:

(INT): 0 = job successful, otherwise error code

adm.EnumServers
Description:

This job returns all servers of a server group

Parameter:

Flags (INT): 0 = return value is server[00..nn]; 1 = return values are Info and InfoType

[GroupID] (INT): ID of the server group

Return values:

[Info] (STRING): MIME encoded buffer with information on the server group
[InfoType] (STRING): semicolon-separated names of values returned in Info
[Server [00..nn]]: semicolon-separated information concerning server

§ |P of the server

enaio® Page 301

enaio®

enaio® server-api

Name of the server
IP address
Port

w w W wWw

Service name
Return:

(INT): 0 = job successful, otherwise error code

adm.GetServerFamilylnfo
Description:

This job returns the ID and the name of the server family.

Parameter:

Flags (INT): not currently supported
Return values:

GUID (STRING): ID of the server family
Name (STRING): name of the server family
Return:

(INT): 0 = job successful, otherwise error code

adm.GetServersActivity
Description:

This job returns all 1Ds of servers and their status.
Parameter:
Flags (INT): not currently supported

Return values:

Server[00..nn] (STRING): semicolon-separated information concerning server

8 D of the server
8§ Status of the server
§ 1= Server running
§ 2= Server crashed
Return:

(INT): 0 = job successful, otherwise error code

adm.GetSystemFile
Description:

enaio®

The job transfers the system file (e.g. as.cfg) to the client and locks it. System files are written to the

database table 'osresources' and have the resource type 1.

enaio® Page 302

enaio® server-api

Parameter:

Flags (INT):

8 LOWORD(Flags) = 0: the system file is opened for reading

8 LOWORD(Flags) = 2: the system file is opened for writing

8 Version !=0 or HIWORD(Flags) '= 0 or LOWORD(Flags) !=2
§ HIWORD(Flags) = 1: LowDateTime and HighDateTime are returned
§ HIWORD(Flags) = 2: LowDateTime is returned

FileName (STRING): name of the system file

Version (INT): Version (INT): version of the system file to be requested

Return values:

[FileCount] (INT): FileCount equals 1

[LowDateTime] (INT): LowDateTime

[HighDateTime] (INT): HighDateTime

[File list]: name and path of the system file

Return:

(INT): 0 = job successful, otherwise error code

See also:

adm.StoreSystemFile

adm.LogdirDeleteFiles
Description:

This job deletes the specified files inside the log directory of the server.
Parameter:

Flags (INT): not currently supported

Files (STRING): file names separated by '?'

Return values:

Deleted (INT): number of deleted files

Failed (INT): number of files that could not be deleted

Return:

(INT): 0 = job successful, otherwise error code

See also:

adm.LogdirGetlInfo

adm.LogdirDownloadFiles
Description:

enaio® Page 303

enaio®

enaio® server-api enaio®
This job returns the specified files inside the log directory of the server. The files are returned in a
compressed form.

Parameter:

Flags (INT): not currently supported

Files (STRING): file names separated by '?'

Return values:

Files (STRING): names of the returned files

File list: File list: name and path of the compressed file (contains all refer to requested files)
Return:

(INT): 0 = job successful, otherwise error code

See also:

adm.LogdirGetlInfo

adm.LogdirGetInfo
Description:

This job returns a list of all files inside the log directory of the server.
Parameter:

Flags (INT): not currently supported

Return values:

FileInformation[00000000..nnnnnnnnn] (STRING): file information separated by '?'
§ File name

§ File size in Byte

§ Timestamp of the last modification

Return:

(INT): 0 = job successful, otherwise error code

See also:

adm.LogdirDownloadFiles

adm.StoreSystemFile
Description:

This job saves the system file received by the client.

Parameter:

Flags (INT):

§ LOWORD(Flags) = 0: save system file and write history file
8 LOWORD(Flags) = 1: undo locking of the file

§ HIWORD(Flags) = 2: save date stamp in LowDateTime format; otherwise use LowDateTime
format and HighDateTime format

enaio® Page 304

enaio® server-api enaio®

FileName (STRING): name of the system file
LowDateTime (INT): date stamp in LowDateTime format
HighDateTime (INT): date stamp in HighDateTime format
File list: name and path of the system file

Return:

(INT): 0 = job successful, otherwise error code

See also:

adm.GetSystemFile

Kernel Core Services (Namespace krn)

Jobs of the 'krn’ kernel executor are used for the internal administration of the application server
processes. These are mainly functions for batch management, server monitoring, registry
administration and administration of loaded engines at runtime.

Reqistry administration

Batch administration

Server administration

Session administration

Engine administration

Other jobs

w w W W W W

Registry Administration

These jobs are for registry administration. Registry entries can be read or changed.
krn.REBackup

krn.REGetCurrentSchema

krn.REGetRegValue

krn.RELoad

krn.RESave

krn.RESetRegValue

w w W W W W

krn.REBackup
Description:

This job creates a backup of the current registry schema in XML format.
Parameter:
Flags (INT): not currently supported

FileName (STRING): Name of the destination file including path information; the file extension
should be .xml

Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 305

enaio® server-api

krn.REGetCurrentSchema
Description:

This job returns the current registry schema in XML format.

Parameter:
Flags (INT): not currently supported

Return values:

Schema (STRING): contains the current schema in XML notation

Return:

(INT): 0 = job successful, otherwise error code

krn.REGetRegValue
Description:

This job returns the value of a specified registry entry.
Parameter:

Flags (INT): not currently supported

Name (STRING): name of the registry entry

Return values:

Value (STRING): Value of the registry entry

Return:

(INT): 0 = job successful, otherwise error code

See also:

krn.RESetRegValue

krn.RELoad
Description:

This job loads the current registry schema into memory.

Parameter:
Flags (INT): not currently supported
Return:

(INT): 0 = job successful, otherwise error code

krn.RESave
Description:

This job saves the current registry schema. The key is HKLM\SOFTWARE\OPTIMAL
SYSTEMS\[service name of the application server]\Schemata \[version number(e.g. 4.0)].

Parameter:

Flags (INT): not currently supported

enaio® Page 306

enaio®

enaio® server-api

Return:

(INT): 0 = job successful, otherwise error code

krn.RESetRegValue
Description:

This job changes the value of a specified registry entry.
Parameter:

Flags (INT): not currently supported

Name (STRING): Name of the registry entry

Value (STRING): Value of the registry entry

Return:

(INT): 0 = job successful, otherwise error code

See also:

krn.REGetRegValue, krn.RESave

Batch administration
§ krn.BatchAdd
krn.BatchChange

krn.BatchEnum
krn.BatchGetStatistic

w w W wWw

krn.BatchRemove

krn.BatchAdd

Description:

This job adds a batch to the registry.

Parameter:

Flags (INT): not currently supported

Registry (STRING): name in the registry

Name (STRING): name of the batch to be added

NameSpace (STRING): namespaces of the job to be executed
JobName (STRING): name of the job to be executed (without namespace)
Scheduling (STRING): time of execution

Period (INT): duration in ms between the job calls

Enabled (BOOL): 1 = batch is enabled, otherwise 0

DoLog (BOOL): 1 = job will be logged, otherwise 0
Parameters: name, data type, job value (MIME encoded buffer)

Return:

enaio® Page 307

enaio®

enaio® server-api

(INT): 0 = job successful, otherwise error code
See also:

krn.BatchChange, krn.BatchRemove

krn.BatchChange
Description:

This job changes an existing batch.
Parameter:

Flags (INT): not currently supported
Registry (STRING): name in the registry

Name (STRING): name of the batch to be added
NameSpace (STRING): namespaces of the job to be executed

JobName (STRING): name of the job to be executed (without namespace)

Scheduling (STRING): time of execution

Period (INT): duration in ms between the job calls
Enabled (BOOL): 1 = batch is enabled, otherwise 0
DoLog (BOOL): 1 = job will be logged, otherwise 0

Parameters: name, data type, job value (MIME encoded buffer)

Return:
(INT): 0 = job successful, otherwise error code
See also:

krn.BatchEnum

krn.BatchEnum
Description:

This job returns a list of existing batches.
Parameter:

Flags (INT): not currently supported

Return values:

Batch[1..n] (STRING): batch information
Return:

(INT): 0 = job successful, otherwise error code
Note:

returned batch information

§ Registry: name of the registry entry

§ Name: batch name

enaio® Page 308

enaio®

enaio® server-api enaio®

Period: duration in ms between the job calls

Scheduling:

JobName: name of the job to be executed (without namespace)
NameSpace: hamespaces of the job to be executed

Enabled 1 = batch is enabled, otherwise 0

DoNotLog: 1 = job will be logged, otherwise 0

TimeCreated: batch creation time

TimeEnabled: activation time

TimeFired: time of last execution

w W W W W W W W W W

Parameters: MIME encoded parameter of the job (name, data type, value)
See also:
krn.BatchAdd, krn.BatchChange, krn.BatchRemove, krn.BatchGetStatistic

krn.BatchGetStatistic
Description:

This job returns statistical parameters for the selected batch.

Parameter:

Flags (INT): not currently supported

Name (STRING): name of the batch for which the job parameters are output

Return values:

Ticks (STRING): number of job executions

PeriodAve (STRING): average time between ticks (in seconds)

PeriodLast (STRING): time between the last and the penultimate tick (in seconds)

DeviationAveP (STRING): average variance of intervals between ticks and the preset (in percent)
DeviationAveS (STRING): average variance of intervals between ticks and the preset (in seconds)
DeviationLastP (STRING): variance between the last two ticks and the preset (in percent)
DeviationLastS (STRING): variance between the last two ticks and the preset (in seconds)
DeviationMaxP (STRING): maximum variance of intervals between ticks and the preset (in percent)
DeviationMaxS (STRING): maximum variance of intervals between ticks and the preset (in seconds)
Return:

(INT): 0 = job successful, otherwise error code

See also:

krn.BatchEnum

krn.BatchRemove
Description:

This job removes the existing batch.

enaio® Page 309

enaio® server-api

Parameter:

Flags (INT): not currently supported

Registry (STRING): Name of the registry entry
Return:

(INT): 0 = job successful, otherwise error code
See also:

krn.BatchEnum

Server Manager
These jobs serve the server administration.

krn.AppsEventsEnum

krn.AppsEventsSubscribe
krn.CheckCrashedServers

krn.CheckServerConnection

krn.GetServerInfo

krn.GetServerInfoEx
krn.MakeBeatPing
krn.RefillServerList
krn.ShutDown

w w W W W W W W W

krn.AppsEventsEnum
Description:

This job returns all defined event types which are implemented in the server.

Parameter:
Flags (INT): not currently supported

Return values:

Info (STRING): semicolon-separated MIME-encoded buffer which receives event types

Infotype (STRING): contains the description of the data returned in the parameter info

Return:

(INT): 0 = job successful, otherwise error code

krn.AppsEventsSubscribe
Description:

enaio®

This job makes the server send out notifications for the specified events to the executor of the job.

Parameter:
Flags (INT): not currently supported

Events (STRING): semicolon-separated events

enaio® Page 310

enaio® server-api enaio®

krn.SessionLogin
krn.SessionLogout
krn.Connected
krn.Disconnected
krn.JobCall

krn.Executor

w W W W W W

Return:

(INT): 0 = job successful, otherwise error code

krn.CheckCrashedServers
Description:

This job finds crashed servers and releases their resources. Such servers have their server status in the
database table 'ospingtable’ set to 2 = 'hung server'.

Parameter:

Flags (INT): not currently supported

Return:

(INT): 0 = job successful, otherwise error code

krn.MakeBeatPing

krn.CheckServerConnection
Description:

This job checks the server connection by incrementing a global counter variable for every job call by 1.
Parameter:

Flags (INT): not currently supported

Return values:

Callnumber (LONG): number of job calls

Return:

(INT): 0 = job successful, otherwise error code

krn.GetServerinfo
Description:

This job returns certain server information.

Parameter:

Flags (INT): not currently supported

Info (INT): information type (see Tab) which will be queried
Return values:

Info (INT): equals the input parameter

enaio® Page 311

enaio® server-api

enaio®

Name (STRING): string corresponding to the info

Value (STRING): outputs the queried server information

Return:

(INT): 0 = job successful, otherwise error code

See also:

krn.GetServerInfoEx

Info type Info string Description

1 ServerID ID of the server

2 ComputerName Name of the server

3 InstanceName Name of the program instance

4 ComString Server ComString (e.g. 127.0.0.1)

5 DataBaseSourceC Database name (e.g. 0s400)

6 DataBaseParser Database parser (e.g. oxorantl.dll)

7 ClientETC Path to the client configuration files

8 StatusLine String of the status bar

9 ServerType 0 = main server; 1 = secondary server

10 ValidDomains

11 DataBaseModule

12 DataBaseParsType

13 DataBaseSchema

14 DataBaseProvider

15 DataBaseConString

16 ETC full path of the server directory 'etc’

17 DataBaseNewMethod

18 DataBaseModuleS

19 DataBaseModuleClient

1000 FileVersionListUpdate returns all file names and the time of creation of the server
directory server\etc\update

1001 FileVersionListClient returns all file names and the time of creation of the server
directory server\etc\update\client

1002 FileVersionListAdmin returns all file names and the time of creation of the server
directory server\etc\update\admin

1003 FileVersionListIndex returns all file names and the time of creation of the server

directory server\etc\update\index

enaio®

Page 312

enaio® server-api enaio®

1004 FileVersionListTemplate | returns all file names and the time of creation of the server
directory server\etc\templates

krn.GetServerIinfoEx
Description:

This job returns the specified server information.

Parameter:

Flags (INT): not currently supported

Info (STRING): semicolon-separated parameters which will be output (;parameter;parameter;...)
8 ?7->the names of all parameters are returned as a list

§ empty string -> all parameters and their values are returned as a list

Return values:

[Param[000...NNN]] (STRING): Output only for Info = ?; names of all parameters which can be
transferred via Info

[parameter name] (STRING): Server Information
Return:

(INT): 0 = job successful, otherwise error code
See also:

krn.GetServerinfo

krn.MakeBeatPing
Description:

This job performs a ping to the application server, the table ‘ospingtable’ will be updated with server
status 1 = 'server active'.

Parameter:

Flags (INT): not currently supported

Return:

(INT): 0 = job successful, otherwise error code
See also:

krn.CheckCrashedServers

krn.RefillServerList
Description:

This job loads the server information from the database tables ‘ospingtable’ and 'sever' into memory.
Parameter:

Flags (INT): not currently supported

enaio® Page 313

enaio® server-api

Return:

(INT): 0 = job successful, otherwise error code

krn.ShutDown
Description:

This job shuts down the server.
Parameter:

Flags (INT): not currently supported
Return:

(INT): 0 = job successful, otherwise error code

Session Administration
These jobs serve the session administration.

krn.SessionAttach

krn.SessionDeletelLost

krn.SessionDrop

krn.SessionDropDB

krn.SessionEnum

krn.SessionEnumDB

krn.SessionEnumResourcesDB

krn.SessionGetlnfo

krn.SessionLogin

krn.SessionLogout

krn.SessionPropertiesEnum

krn.SessionPropertiesGet

krn.SessionPropertiesSet

krn.UserSessionCreate

w W W W W W W W W W W W W W W

krn.UserSessionDelete

krn.SessionAttach
Description:

enaio®

This job creates a new work session with the application server or resumes an existing work session.

Parameter:

Flags (INT): not currently supported

SessionGUID (STRING): GUID of the session which will be resumed; empty = a new session will be

created

Return values:

SessionGUID (STRING): GUID of the new session or the existing session

enaio® Page 314

enaio® server-api enaio®

Return:

(INT): 0 = job successful, otherwise error code

krn.SessionDeletelLost
Description:

This job deletes all sessions which are no longer online from the database.
Parameter:

Flags (INT): 1 = parameter AgeHours applies

AgeHours (INT): number of hours

Return values:

DeletedSessions (STRING): ID of the deleted sessions

Return:

(INT): 0 = job successful, otherwise error code

krn.SessionDrop
Description:

This job deletes the specified session.
Parameter:

Flags (INT): not currently supported
SessionGUID (STRING): ID of the session
Return:

(INT): 0 = job successful, otherwise error code

krn.SessionDropDB
Description:

This job deletes all entries of a session in the database (oslockedres, ossession).
Parameter:

Flags (INT): not currently supported

SessionGUID (STRING): ID of the session

Return:

(INT): 0 = job successful, otherwise error code

krn.SessionEnum
Description:

This job returns a list of all existing sessions connected to the server.
Parameter:

Flags (INT): not currently supported

enaio® Page 315

enaio® server-api enaio®

Return values:
Sessions (STRING): semicolon-separated list of GUIDs of all active sessions
Return:

(INT): 0 = job successful, otherwise error code

krn.SessionEnumDB
Description:

This job returns a list of all database entries for the sessions.

Parameter:

Flags (INT): not currently supported

Return values:

SessionInfoType (STRING): contains the description of the data returned in the parameter sessions
Sessions (STRING): MIME encoded buffer with information on the session

Return:

(INT): 0 = job successful, otherwise error code

krn.SessionEnumResourcesDB
Description:

This job returns all used resources saved in the database for the specified session.
Parameter:

Flags (INT): not currently supported

SessionGUID (STRING): ID of the session

Return values:

Resources (STRING): semicolon-separated resources (format:
GUID1=Locktimel,Namel;GUID2=Locktime2,Name2;...)

8 D of the resource

§ time at which the resource was locked

8 short description of the resource

Return:

(INT): 0 = job successful, otherwise error code
See also:

krn.SessionEnum

krn.SessionGetInfo
Description:

This job returns information on the sessions transferred in the GUID that exist at the server.

Parameter:

enaio® Page 316

enaio® server-api enaio®

Flags (INT): not currently supported

Sessions (STRING): semicolon-separated 1Ds of the sessions

Return values:

SessionInfoType (STRING): information identifiers which are returned in the parameter Sessioninfo

ConnectionIinfoType (STRING): information identifiers which are returned in the parameter
SessionInfo

SessionlInfo (STRING): MIME encoded buffer with information on the session
Return:

(INT): 0 = job successful, otherwise error code

krn.SessionLogin
Description:

This job logs a user on to the active session. The user is identified by his name and the encrypted
password.

Parameter:
Flags (INT): not currently supported
UserName (STRING): User name

UserPwd (STRING): encrypted password, information on password encryption can be obtained from
OPTIMAL SYSTEMS GmbH

[EntMgr] (LONG): parameter should only be set for Enterprise Manager Start

Return values:

Description (STRING): description if an error occurs

Action (STRING): action which was executed

[UserGUID] (STRING): GUID of the user who was logged in (only with Enterprise Manager)
[UserID] (INT): ID of the user who was logged in (only with Enterprise Manager)

Return:

(INT): 0 = job successful, otherwise error code

See also:

krn.SessionAttach, krn.SessionLogout, krn.SessionPropertiesSet

krn.SessionLogout
Description:

This job ends the use of the active session.
Parameter:

Flags (INT): not currently supported
Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 317

enaio® server-api enaio®

krn.SessionPropertiesEnum
Description:

This job returns the names of all properties of a session with the server.
Parameter:

Flags (INT): not currently supported

Return values:

Names (STRING): semicolon-separated properties which will be set
Return:

(INT): 0 = job successful, otherwise error code

krn.SessionPropertiesGet

Description:

This job returns the specified properties of a specified session.
Parameter:

Flags (INT): not currently supported

Properties (STRING): semicolon-separated properties which will be displayed (an output parameter is
created for each property which is specified here)

SessionGUID (STRING): GUID of the session

Return values:

The output parameters are dictated by the input parameter Properties.
Return:

(INT): 0 = job successful, otherwise error code

Note:

Properties of a session

Address: address of the application server

SessGUID: Session GUID

Statname: computer name of the workstation

instname: instance name

StatGUID: GUID of the workstation

UserGUID: GUID of the user

hasserveraccount: does the session have a server account?
loggedin: is a user logged in?

haschannel: does the session have a channel?

autologin: login through dialog or autologin

supervisor: name of the supervisor

w W W W W W W W W W W W

LanglD: ID of the language

See also:
enaio® Page 318

enaio® server-api enaio®

krn.SessionPropertiesSet, krn.SessionPropertiesEnum

krn.SessionPropertiesSet

Description:

This job sets the properties of a session.

Parameter:

Flags (INT): not currently supported

Properties (STRING): semicolon-separated properties which will be set

[property name] (STRING): value of the property (an input parameter is generated for each property
that is specified in the parameter properties)

Return:

(INT): 0 = job successful, otherwise error code
Note:

Properties of a session

Address: address of the application server
SessGUID: Session GUID

Statname: computer name of the workstation
instname: instance name

StatGUID: GUID of the workstation
UserGUID: GUID of the user
hasserveraccount: does the session have a server account?
loggedin: is a user logged in?

haschannel: does the session have a channel?
autologin: login through dialog or autologin

supervisor: name of the supervisor

w W W W W W W W W W W W

LanglD: ID of the language
See also:

krn.SessionPropertiesGet, krn.SessionPropertiesEnum

krn.UserSessionCreate
Description:

This job creates a user session for a B2B connection. A B2B connection is established between two
servers (e.g. DRT server and Java server).

Parameter:

Flags (INT): not currently supported
Return values:

SessionGUID (STRING): ID of the session

Return:
enaio® Page 319

enaio® server-api enaio®

(INT): 0 = job successful, otherwise error code
See also:

krn.UserSessionDelete

krn.UserSessionDelete
Description:

This job deletes a user session for a B2B connection. A B2B connection is established between two
servers (e.g. DRT server and Java server).

Parameter:

Flags (INT): not currently supported
SessionGUID (STRING): ID of the session
Return:

(INT): 0 = job successful, otherwise error code
See also:

krn.UserSessionCreate

Engine administration
These jobs serve the engine administration.
krn.EnumJobs

krn.EnumNameSpaces

krn.GetNameSpaceParams

krn.LoadExecutor

krn.NameSpaceEnum

krn.NameSpaceGetlnfo

krn.NameSpaceGetJobsInfo

krn.ReloadExecutor

w W W W W W W W W

krn.UnloadExecutor

krn.EnumJobs
Description:

The job returns a list of the implemented jobs for a specified namespace.

Parameter:

Flags (INT): not currently supported

NameSpace (STRING): short description of the namespace for which the list of jobs will be created
Return values:

[Job name] (STRING): name of the job implemented

Return:

(INT): 0 = job successful, otherwise error code
enaio® Page 320

enaio® server-api enaio®

See also:

krn.EnumNameSpaces

krn.EnumNameSpaces
Description:

This job returns a list of the implemented namespaces.

Parameter:

Flags (INT): not currently supported

Return values:

NameSpace[1..n] (STRING): name of the namespace, sorted according to the alphabet
Return:

(INT): 0 = job successful, otherwise error code

See also:

krn.EnumJobs

krn.GetNameSpaceParams
Description:

The job returns the namespace parameters of a specified namespace.
Parameter:

Flags (INT): not currently supported

NameSpace (STRING): short description of the namespace

Return values:

Child (INT): 1 = the executor was started as a designated process, otherwise 0
ExecutorPresent (BOOL): 1 = executor is available, otherwise 0
Internal (BOOL): internal namespace

8 1 =internal namespace (implemented in the kernel)

§ 0=implemented in the executor

Queue (STRING): name of the queue for the namespace

State (INT): status of the namespace as a number

§ 0=CREATED

§ 1=LOADING

§ 2=LOADED

§ 3=UNLOADING
§ 4=UNLOADED

StateText (STRING): status as text
Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 321

enaio® server-api enaio®

See also:

krn.EnumNameSpaces

krn.LoadExecutor
Description:

The job loads an executor.

Parameter:

Flags (INT): not currently supported

Name (STRING): short description of the namespace which will be loaded
Return:

(INT): 0 = job successful, otherwise error code

See also:

krn.ReloadExecutor

krn.NameSpaceEnum
Description:

This job returns a list of the implemented namespaces.

Parameter:

Flags (INT): not currently supported

Return values:

Namespaces (STRING): semicolon-separated short descriptions of all namespaces
Return:

(INT): 0 = job successful, otherwise error code

krn.NameSpaceGetinfo
Description:

This job returns all information on the specified namespace.

Parameter:

Flags (INT): not currently supported

NameSpaces (STRING): short description of the namespace

Return values:

NameSpacelnfo (STRING): MIME encoded buffer which contains information

NameSpacelnfoType (STRING): contains the description of the data returned in the parameter
NameSpacelnfo

Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 322

enaio® server-api enaio®

krn.NameSpaceGetlobsinfo
Description:

This job provides information (name, number of job calls...) for the jobs of the specified namespace.
Parameter:

Flags (INT): not currently supported

NameSpaces (STRING): short description of the namespace

Return values:

NameSpacelnfo (STRING): MIME encoded buffer which contains information

NameSpacelnfoType (STRING): contains the description of the data returned in the parameter
NameSpacelnfo

Return:

(INT): 0 = job successful, otherwise error code

krn.ReloadExecutor
Description:

The job reloads an executor.

Parameter:

Flags (INT): not currently supported

Name (STRING): namespace which will be reloaded
Return:

(INT): 0 = job successful, otherwise error code

krn.UnloadExecutor
Description:

This job deletes a specified namespace (executor) from the server.
Parameter:

Flags (INT): not currently supported

Name (STRING): namespace which will be deleted

Return:

(INT): 0 = job successful, otherwise error code

General Administration
§ krn.EnumModules
krn.JobThreadBreak
krn.JobThreadGetlnfo

krn.QueueEnum

w w W wWw

krn.QueueGetParams

enaio® Page 323

enaio® server-api enaio®

§ krn.QueueGetStatistic

krn.EnumModules

Description:

The job returns a list of the loaded modules (libraries). System32 dlls can be hidden for this process.
Parameter:

Flags (INT): not currently supported

NoSystem32 (BOOL): hide System32 dlIs (0 = no, 1 = yes)

Return values:

Module[1..n] (STRING): semicolon-separated information for the respective modules
Basename: module name without path information

FileName: module name with path information

Version: Module version

Create: time of file creation

Write: time of the last modification of the file

w w w W W W

Access: time of the last access to the file
Return:

(INT): 0 = job successful, otherwise error code

krn.JobThreadBreak
Description:

This job interrupts the execution of the currently specified job. The job can only be used for correctly
running jobs which support this job.

Parameter:

Flags (INT): not currently supported
ThreadID (INT): ID of the thread
JobNumber (INT): job number
Queue (STRING): queue name
Return:

(INT): 0 = job successful, otherwise error code

krn.JobThreadGetinfo
Description:

This job provides information on the thread.
Parameter:
Flags (INT): not currently supported

Return values:

enaio® Page 324

enaio® server-api enaio®

Info (STRING): semicolon-separated MIME-encoded information on threads
Infotype (STRING): contains the description of the data returned in the parameter info
Return:

(INT): 0 = job successful, otherwise error code

krn.QueueEnum
Description:

This job creates a list with the names of existing queues. Typical queues are: common, dbpipe, ocr,
workflow and redir.

Parameter:

Flags (INT): not currently supported

Return values:

Queue[1..n] (STRING): name of the respective queue
Return:

(INT): 0 = job successful, otherwise error code

See also:

krn.QueueGetParams, krn.QueueGetStatistic

krn.QueueGetParams
Description:

This job returns the parameters of a specified queue.
Parameter:

Flags (INT): not currently supported

Queue (STRING): queue name

Return values:

NumThreads (INT): number of threads

Priority (INT): Priority

§ 0=low
§ 1=normal
§ 2= high

MaxQueueSize (INT): maximum number of jobs which can be handled
Return:

(INT): 0 = job successful, otherwise error code

See also:

krn.QueueEnum, krn.QueueGetStatistic

enaio® Page 325

enaio® server-api

krn.QueueGetStatistic
Description:

This job provides static information for a specified queue.

Parameter:

Flags (INT): not currently supported
Queue (STRING): queue name

Return values:

JobsPosted (INT): number of sent jobs
JobsWaiting (INT): number of waiting jobs
LastPop (STRING): time of the last pop
LastPush (STRING): time of the last push

NameSpaces (STRING): semicolon-separated namespaces which use this queue

Threads (STRING): semicolon-separated threads of this queue

Return:
(INT): 0 = job successful, otherwise error code
See also:

krn.QueueEnum

Other jobs
krn.CheckDiskSpace
krn.GetFileVersionList
krn.GetNextindex
krn.RunScript
krn.SendAdminMail
krn.SendMail
krn.SendMessageToClients

krn.ProcessGetlnformation

w W W W W W W W W

krn.GetCounter

krn.CheckDiskSpace

Description:

This job provides information on the capacity of the specified hard disk.

Parameter:
Flags (INT): not currently supported
Disk (STRING): name of the hard disk

8 ROOT = determines the capacity of a drive on which the server directory is located

8§ DATA = determines the capacity of a drive on which the WORK server directory is located

enaio® Page 326

enaio®

enaio® server-api enaio®

§ LOG = determines the capacity of a drive on which the LOG server directory is located

MinSpace (INT): minimum free storage in MB (if this value is exceeded, the administrator is notified
by e-mail; empty = MinSpace is read from the registry)

InformAdmin (BOOL): 1 = the administrator will be informed by e-mail, otherwise 0
Return values:

Total (INT): size of the hard disk in MB

Free (INT): free space in MB

Min (INT): minimum free space in MB

Return:

(INT): 0 = job successful, otherwise error code

krn.GetFileVersionList
Description:

This job returns a list of files of the queried directories including information on the time of creation as
strings. For dll, ocx and exe files the version number is returned instead of the creation time.

Parameter:
Flags (INT): not currently supported

Directory (STRING): directory, the entry "' corresponds to server\etc, '.." corresponds to server
directory

Return values:

FileVersionList (STRING): string containing file names and creation time,
formatting: [file name]+[date time/version number]#
[file name 2]+[date time 2 version number2]#..

Return:

(INT): 0 = job successful, otherwise error code

krn.GetNextindex
Description:

This job returns the next index from the database table ‘osnextindex’ for all DB entries which require a
unique ID.

Parameter:

Flags (INT): not currently supported
Return values:

Index (INT): queried index

Return:

(INT): 0 = job successful, otherwise error code

krn.RunScript
Description:
enaio® Page 327

enaio® server-api enaio®
This job executes a specified VB script Script text can be passed as parameter 'Script,’ as parameter
'ScriptFile’ or as file list. Script text is determined in this order.

Parameter:

Flags (INT): not currently supported

Script (STRING): VB script which will be executed

CtxName (STRING): name of the context, can be empty. The default name is used in such a case.

GUI (BOOL): specifies whether MsgBox can be called from the script. Whether MsgBox can really be
called, depends on the server environment.

Eval (BOOL): defines whether Eval (if true) or Exec (if false) will be called.
Main (STRING, optional): name of the main function; default value "Main"
ScriptFile (STRING, optional): name of the file with script text

Return:

(INT): 0 = job successful, otherwise error code

Krn.EmptyJob

Description:

This job does nothing. It can be used to run Before and After Event scripts. The job has no specific
parameters.

Return:

(INT): 0 = job successful, otherwise error code

krn.SendAdminMail
Description:

The job sends an e-mail to the preset administrator. The registry must therefore contain the registry
entries Mailserver(SMTP IP address) and AdminMail(e-mail address)

under the key HKLM\\Software\\Optimal Systems\\[application_server_name]\\Schemata. The passed
file list will then become a mail attachment.

Parameter:

Flags (INT): not currently supported

Sender (STRING): sender name

Subject (STRING): e-mail subject line

Text (STRING): text content of the e-mail
Return:

(INT): 0 = job successful, otherwise error code
See also:

Reqistry administration

krn.SendMail
Description:
enaio® Page 328

enaio® server-api enaio®

This job sends an e-mail to a recipient which has been identified by an e-mail address. The registry
must therefore contain the registry entry "Mailserver' (SMTP IP address) under the key
HKLM\\Software\\Optimal Systems\\[application_server_name]\\Schemata.

Parameter:

Flags (INT): not currently supported

Receiver: (STRING): E-mail address of the recipient
Sender (STRING): sender name

Subject (STRING): e-mail subject line

Text (STRING): text content of the e-mail

FileNamePrefix (STRING): (optional) prefix for names of files (attachments) that are sent with an e-
mail. If a prefix was specified, a file XYz _abc is renamed to <prefix>.XYZ.abc.

Return:
(INT): 0 = job successful, otherwise error code
See also:

Registry administration

krn.SendMessageToClients
Description:

This job sends a message to one or all connected clients.

Parameter:

Flags (INT): not currently supported

Computer (STRING): empty = notify all computers, otherwise a computer name
Instance (STRING): program name

User (STRING): name of the user receiving a notification

Message (STRING): type of message

Info (STRING): notification text (program notification)

Text (STRING): notification text for users (e.g. message box)

Return:

(INT): 0 = job successful, otherwise error code

krn.ProcessGetinformation
Description:

This job returns Windows performance counter with information on kernel processes. Information
will be determined only from the server at which the own session is logged in.

Parameter:

Flags (INT): If 0 or 1, the information is returned in binary form (for Monitor and enaio® enterprise-
manager). If 2, the information is returned in text form and logged in Channel 11.

Return:

enaio® Page 329

enaio® server-api enaio®

(INT): 0 = job successful, otherwise error code

krn.GetCounter
Description:

This job administers counters in the oscounters table. It is possible to query the counter value and to
reset or create the counter. When calling the job, the counter value will be increased unless the counter
IS to be reset. Resetting is carried out depending on the counter type. The time of the job call is saved
on the server in order to determine if the counter is to be reset at the next call.

Counter has type:

0 = counter is reset manually by job parameter

1 = counter is reset daily

2 = counter is reset monthly

3 =counter is reset yearly

Counters are identified with GUID and type.

Parameter:

Flags (INT): not currently supported

CounterGUID (STRING): GUID of the counter

CounterType (INT): type of the counter

Reset (BOOLEAN): specifies if the counter will be reset in case the CounterType is 0.
Initial (INT): value with which the counter will be initialized if it does not exist yet or is reset
Return values:

Counter (INT): value of the counter

Return:

(INT): 0 = job successful, otherwise error code

License Core Services (Namespace lic)

This namespace is located besides the ADM executor and the KRN executor in the server kernel and
includes all jobs which are responsible for the license management of the entire enaio® system. To use
different functions a login for the respective licenses must be performed before execution.

In particular for the use of the standard, DMS and workflow engine the kernel checks if the called
instance has been authorized and if a license has been used.

The license login is performed with the jobs LicLogin or LicLoginEx. The required license strings must
be passed (in particular ASC, MWC) before the DMS and workflow engine can be used.

lic.CheckLicense

lic.LicCopyDefault

lic.LicFreeResource
lic.LicGetGloballnfo
lic.LicGetGloballnfoEx
lic.LicGetModulelnfo

w w w W W W

enaio® Page 330

enaio® server-api enaio®

lic.LicGetQueueStatus
lic.LicLogin
lic.LicLoginEx
lic.LicLogout

lic.LicLogoutEx
lic.LicResetData

w W W W W W

lic.CheckLicense
Description:

This job checks if the queried modules are licensed for the workstation of the enaio® client. The license
is not locked in the database.

Parameter:

Flags (INT): not currently supported

Modules (STRING): short descriptions of the modules separated by space characters
Return values:

Result (STRING): return codes for the queried modules separated by space characters
§ 0 =alicense exists for the module

§ 602 = Error

Return:

(INT): 0 = job successful, otherwise error code

lic.LicCopyDefault
Description:

This job distributes all Named licenses, which are defined in the DB table ‘oslicresources' for the
Standard station, for all other stations. This happens during network setup, for example.

Parameter:
Flags (INT): not currently supported
Return:

(INT): 0 = job successful, otherwise error code

lic.LicFreeResource
Description:

This job releases a resource which can be found in the DB table 'osresources'. The resources are:
modules (ADM, M_X, etc.) and important system files (aslisten.dat, .cfg files, background images,
etc.).

Parameter:
Flags (INT): not currently supported
SessionGUID (STRING): the current SessionGUID

enaio® Page 331

enaio® server-api enaio®

ResourcelD (STRING): the ResourcelD of the resource which will be released
Return:

(INT): 0 = job successful, otherwise error code

lic.LicGetGloballnfo

Description:

This job returns the value of the specified parameter which is contained in license data (aslic.dat).
Parameter:

Flags (INT): not currently supported

Info (STRING): name of the queried parameter
IDENT = identification method

ADDRESS = GUID or IP address
CREATED = license creation date
CREATEDFROM = created by
CUSTOMEROO = Licensee
LASTMODIFIED = last modified
MODIFIEDFROM = modified by
SERVICENAME = service name

EXPIRES = valid until

w W W W W W W W W

Return values:

Result (STRING): value of the queried parameter
Return:

(INT): 0 = job successful, otherwise error code
See also:

lic.LicGetGloballnfoEx

lic.LicGetGloballnfoEx
Description:

This job returns the value of the specified parameter which is contained in license data (aslic.dat).
Parameter:

Flags (INT): not currently supported

Info (STRING): names of the queried parameters in the format ;Parameter;Parameter;...

8 empty = all parameters are returned

§ ?=all parameter names are returned

Return values:

[parameter name] (STRING): value of the queried parameter

[PARAMI000...nnn]]: Parameter name (only for Info = ?)

enaio® Page 332

enaio® server-api enaio®

Return:

(INT): 0 = job successful, otherwise error code

lic.LicGetModulelnfo
Description:

This job returns information (type, max. number of users) for the license of the specified module.
Parameter:
Flags (INT): not currently supported
Module (STRING): short name of the module which will be queried
Return values:
Result (STRING): string which describes the license characteristics of the specified module
§ MaxUseCount: max. number of clients which can use the module
8 License type
§ N = the module can only by used by clients which work at the specific workstations

§ C =the module can be used by the clients of the respective workstations, but only by a limited
number (MaxUseCount) of clients

§ Number of configurations which can be created
Return:

(INT): 0 = job successful, otherwise error code

lic.LicGetQueueStatus
Description:

This job provides information on licenses for specified modules and system files which are currently
issued by the server for the specified stations.

Parameter:
Flags (INT): not currently supported

Modules (STRING): short module names which are queried separated by space characters (empty = all
modules and system files)

Stations (STRING): station names which are queried separated by space characters (empty = all
stations)

Return values:

File list: name and path of the file; contains queried information on licenses (file format .rpt)
8 Time of license issue (time stamp)

Short name for module/system file

License type (0 = module, 1 = system file)

Workstation hame

w w w w

User name

enaio® Page 333

enaio® server-api enaio®

Flags -> currently not used
Parameters -> currently not used
ID of the server group

Session GUID

ID of the module/system file
FileCount (INT): always 1

w w W W W

Return:

(INT): 0 = job successful, otherwise error code

lic.LicLogin
Description:

This job issues a license for the specified module. Before the client application can use certain enaio®
modules, the server must grant permission for their use. The server checks (e.g. the number of licenses,
access to the module only from specific workstations) if the client is authorized to use this module. If
the check is successful, the server will lock the license in the database.

Parameter:

Flags (INT): not currently supported

Module (STRING): short description of the module
Return values:

Result (STRING): 0 = license granted, >0 = error
Return:

(INT): 0 = job successful, otherwise error code

See also:

lic.LicLoginEx, lic.LicLogout

lic.LicLoginEx
Description:

This job grants licenses for the specified modules. Before the client application can use certain enaio®
modules, the server must grant permission for their use. The server checks (e.g. the number of licenses,
access to the module only from specific workstations) if the client is authorized to use this module. If
the check is successful, the server will lock the license in the database.

Parameter:

Flags (INT): not currently supported

Module (STRING): short descriptions of the modules separated by space characters

Return values:

Result (STRING): result notifications separated by space characters (0 = license granted, >0 = error)
Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 334

enaio® server-api enaio®

See also:

lic.LicLogoutEx

lic.LicLogout
Description:

This job releases a license for a specified module which was previously locked with LicLogin or
LicLoginEx.

Parameter:

Flags (INT): not currently supported

Module (STRING): short description of the module
Return values:

Result (STRING): 0 = license released, >0 = error
Return:

(INT): 0 = job successful, otherwise error code

lic.LicLogoutEx
Description:

This job releases a license for multiple modules which were previously locked with LicLogin or
LicLoginEXx.

Parameter:

Flags (INT): not currently supported

Modules (STRING): short descriptions of the modules separated by space characters

Return values:

Result (STRING): result notifications separated by space characters (0 = license granted, >0 = error)
Return:

(INT): 0 = job successful, otherwise error code

lic.LicResetData
Description:

This job forces the server to reread the license information (aslic.dat) from the database (oslicense).
The job is sent to the active servers of the server group by the server which has changed the license
information. The servers which receive this information must modify their internal data structures
which are related to the license system.

Parameter:
Flags (INT): not currently supported
Return:

(INT): 0 = job successful, otherwise error code

enaio® Page 335

enaio® server-api ‘ enaio®

Data Transfer Services (Namespace dtr)
This namespace contains jobs for the execution of the data transfer server.
Important:

Since the data transfer server uses MS Office, the application server cannot run under the local system
account, but must use a user account for login.

For the call on the server side of the data transfer server, '‘German’ is used as the default language. The
language can be specified via a registry entry for the enaio® server:

HKEY_LOCAL_MACH INE\SOFTWARE\Wow6432Node\OPT IMAL SYSTEMS\MS Office
integration\0S:4_x-Office-Utilities\

Create the DWORD value 'Language’ with the language-specific value (cf. 'Language codes").

§ dtr.SynchronizeData

Return:

(INT): 0 = job successful, otherwise error code

dtr.SynchronizeData
Description

Parameter:

Flags (INT): not currently supported
ObjectType (INT): Object type
ObjectID (INT): Object ID

[TemplateAlias] (String): name of the template which will be filled with the existing index data. Instead
of a template name a template file can be passed using a file list.

[File list]: Name and path of the template file. Alternative to the parameter template
Return:

[File list]: Name and path of the filled document

enaio® Page 336

enaio® server-api enaio®

OxSvrSpt

General Description

The OxSvrSpt.dI 1 library allows access to server functionalities through a Microsoft COM
interface. The main focus is on convenient manageability by the user and by VB as well as script
compliant COM interfaces. An easy-to-use approach is followed that allows the execution of simple
calls through fewer lines of code.

The following properties are supported:
§ Error handling using COM errors (IErrorinfo)

& All errors that occurred will be returned as COM errors. In case a call of a method returns
multiple errors (e.g. server job call), the first error will be returned as a COM error and all other
errors are available in a collection.

8 Transparent use of the Base64 parameter

8 Processing of the Base64 server parameter is done by OxSvrSpt completely. Stream and XML
access methods are made available to the user for this purpose.

§ Automatic encoding and decoding of the binary parameter (BASE64)

§ Data transferred to the OxSvrSpt library by the user will be encoded automatically for the
transfer to the server in MIME-BASE64 code and when returned from the server the data will be
decoded. Users no longer come into contact with encoding.

8 Encoding and decoding of XML data through the library

8 With the XML properties of the parameter and file parameter interfaces, it is possible to read
and set the basic string representation (BSTR) of the XML data. In doing so, the OxSvrSpt
library applies the correct encoding and decoding to the respective binary representation (UTF-
8, UTF-16, ...). Furthermore, the stream methods of these interfaces allows further processing of
data directly using an IStream interface. That way it is possible, for example, to load the
parameters directly into a MSXML-DOM document or transfer them from such a document.

§ Automatic password encoding through the module

§ During login it is possible to transfer the password in encoded or decoded form. The required
conversion for the transfer to the server is done by the OxSvrSpt library.

8 Collections that can be used with ForEach

8 All COM collections can be used with the ForEach statement. As a result, it is possible to iterate
over these statements in Visual Basic, scripting environments and .NET.

8§ Correct processing of collections and parameters in the debugger

8§ Itisensured that used stream access will not be disturbed in debug environments that can access
the properties of COM objects directly and display them (e.g. Visual Basic). Collections are
suitable for VB, resulting in the possibility to view elements in the VB debugger.

§ Return parameters are generated by the called property or method.

enaio® Page 337

enaio® server-api enaio®

8 All return parameters are made available in such a way that they are generated using a method of
the OxSvrSpt library. It is not necessary to transfer a variable for filling from a COM script
environment to the library. The server object is, with the exception of the support object, the
only object that can be generated. All other interfaces are made available by this object or
subordinate interfaces.

§ Convenient processing of notifications

8 For the processing of notifications an event interface is available that processes in and out
parameters, comparable to the job interface.

§ Methods for reading and writing of ASCII data from streams

§ If an attempt is being made to serialize basic strings from within Visual Basic or COM based
script environments, data will be processed as wide chars. The provided method allows to read
and write data that is not XML from Base64 parameters as ASCII.

Modules

Integration of Library

In this section, it is described how to use the OxSvrSpt library in different programming
languages. Depending on the used programming language and the development environment, there
are different possibilities to access the library.

Visual Basic

In order to use OxSvrSpt with the type library, the enaio® server library must be integrated using
the "Links" menu of the development environment.

This can be done with the following code:

Private m_oServer As new OxSvrSpt.Server

The component can also be integrated through late binding. The source code corresponds to the
VBScript code.

Visual Basic Script
In VVBScript, the server object can be generated as follows:

Dim oServer
Set oServer = CreateObject("OxSvrSpt.Server")

Visual C++

It is recommended to use the import directive for the integration of the OxSvrSpt library in
Visual C++. The following part of source code shows the import. It should be done at a central
point, e.g. the StdAfx_h.

// warning C4192: automatic exclusion of "IStream”

// when importing the type library “OxSvrSpt.tlb*

#pragma warning (disable: 4192)

#import "OxSvrSpt.dll" raw_method_prefix('raw_'") rename_namespace('OxSvrSpt")
#pragma warning (default: 4192)

Instead of the raw methods, the high methods should be used. In order to avoid confusion, raw
functions have the prefix raw_ in the previously mentioned import directive. COM errors are

automatically mapped for _com_error exception handling by high methods. Additionally, it is

enaio® Page 338

enaio® server-api enaio®

ensured that transferred basic strings have the correct type. The following part of source code shows
how to use a wide char string instead of a basic string as transfer parameter. Since the access to a
basic string in C++ corresponds to the access to a WIDECHAR string, it can be compiled and
executed as long as the COM client and the COM server are in the same apartment.

But it must not be assumed that this is the case!

Such a call can result in errors that are difficult to locate.
HRESULT Test(BSTR Message);

HRESULT hr = Test(L"something");

But if the high method is used instead of the raw method, the _bstr_t class ensures correct
processing.

HRESULT Test(_bstr_t Message);

ﬁééSULT hr = Test(L"something");
Note:

When implementing high methods without retval return value, the import directive declares
these methods as HRESULT instead of void. However, HRESULT never sends an error value,
because in case of an error the _com_error exception will be thrown. The structure of these
methods is very similar to the structure of raw features. Also for this reason, the
raw_method_prefix should be used in order to avoid confusion.

The creation of the object should be done with the 1ServerPtr constructor and not with the
CreatelInstance method, because with the latter no _com_error exception is thrown. When
using the second option, it is necessary to evaluate the HRESULT value individually to receive an
appropriate error message.

try

{
OxSvrSpt: :1ServerPtr spServer(__uuidof(OxSvrSpt::Server));

catch(_com_error& ex)
{

// error handling takes place here

}

Alternatively, the creation of the 1Server object can be done with the name of the coclass. This, in
turn, corresponds to the late binding when creating an object in Visual Basic.

try
{
OxSvrSpt: :1ServerPtr spServer("OxSvrSpt::Server™));

catch(_com_erroré& ex)

// error handling takes place here

}

Microsoft C#

In order to use the component, the enaio® server access library link must be added in Microsoft
Visual Studio. To do so, click on Project>Add reference>COM. Then, the OxSvrSpt namespace
can be integrated through the using directive.

enaio® Page 339

enaio® server-api enaio®

Server server = NEW Server();

Registration

This section describes how to use the 1Session object in different programming languages. Login
procedures will be presented with which you can log in to an enaio® server using an unencrypted or
encrypted password, a session GUID and the NT user name.

Login Options

In order to log in to the system, an object of the 1Server class must be created. This object
provides methods, such as Login(), that you can use to log in. In case of a successful
authentication, the methods return an ISession object. If the authentication failed, a COM
exception is thrown. If an empty string is passed for the parameters User name and Password,
the library tries to log in with the NT user data. Logging in automatically is possible, if this option
was activated in enaio® administrator. The NTLM authentication option is not yet implemented.

§ The Login() method is used for logging in the specified user to the specified server.
§ The LoginGUID() method is used for logging in to an existing SessionGUID.

§ The LoginBalanced() method is used for logging in to a server group. Every possible server
entry in the list consists of a server name, the port and a weighting. The weighting indicates the
possibility to establish a connection to the respective server. The sum of all servers’ weightings
must not be greater than 100.

§ The OpenSession() method is used for logging in to an existing Defaul tSession.
DefaultSessions can be created with the methods mentioned before by setting the
Defaul tSession parameter to true.

Visual Basic and VBScript

The parameters User name, Password, Server, and Port are passed to the Login() method.
In this case, the parameters PasswordType and DefaultSession are set to false automatically.

Dim session As session

" User login on a specified server

Set session = server.Login(root”, "optimal', "localhost"™, "4000")

" Login using an existing SessionGUID

Set session = server.LoginGUID("'D57D21256EFB4C91B79EDD5A4928400B", "localhost",
4000

" User login to a group of servers

Set session = server.LoginBalanced(*'root", "optimal®,
"localhost#4000#90;10.1.3.100#4600#10'")

Visual C++

In C++, the parameters PasswordType and Defaul tSession must not be omitted, because C++
does not support default values. The following examples show the login process with an encrypted
password.

enaio® Page 340

enaio® server-api enaio®

// user login on a specified server

OxSvrSpt::1SessionPtr spSession = spServer->Login(‘'root",
""HB016016116515215614215500000000000000000000000000", *localhost™,
"4000", OxSvrSpt::PasswortTypeEnum: :pwEncrypted, false);

// login using an existing SessionGUID

OxSvrSpt::I1SessionPtr spSession = spServer-
>LoginGUID("'D57D21256EFB4C91B79EDD5A4928400B"",

"localhost™, '"4000", false);

// user login to a group of servers

OxSvrSpt::1SessionPtr spSession = spServer->LoginBalanced(''root",
""HB016016116515215614215500000000000000000000000000™,
"localhost#4000#90;10.1.3.100#4600#10",

OxSvrSpt: :PasswortTypeEnum: :pwEncrypted, false);

// create a DefaultSession (parameter DefaultSession = true)
OxSvrSpt: :1SessionPtr spDefaultSession = spServer->Login(*'root",
""HB016016116515215614215500000000000000000000000000", *localhost™,
4000, OXSvrSpt::PasswortTypeEnum: :pwEncrypted, true);

// log in to a DefaultSession

OxSvrSpt: :1SessionPtr spSession = spServer->0penSession(
(bstr_t)spDefaultSession->Properties->ltem[''SessionGUID"]->Value,
OxSvrSpt.OpenSession');

Visual C#

In C#, the parameters PasswordType and Defaul tSession must not be omitted. In this
example, the NT user name is used for the login which is why empty strings are passed for the
parameters User name and Password.

// user login on a specified server

Session session = server._Login(',"","localhost,"™ "4000",
PasswortTypeEnum.pwNotEncrypted, false);

// login using an existing SessionGUID

Session session = server.LoginGUID("'D57D21256EFB4C91B79EDD5A4928400B",
"localhost", '4000", false);

// user login to a group of servers

Session session = server._LoginBalanced(*'™, ",
"localhost#4000#90;10.1.3.100#4600#10",

PasswortTypeEnum.pwNotEncrypted, false);

// create a DefaultSession (parameter DefaultSession = true)

Session defaultSession = server._Login(*'root"”,"optimal","localhost', "4000",
PasswordTypeEnum.pwNotEncrypted, true);

// log in to a DefaultSession

Session session =

server ._OpenSession(defaultSession.Properties["SessionGUID"] .Value.ToString(),
"OxSvrSpt.OpenSession™);

License Management

For validating and using licenses, the 1Session collection is available in the ILicenses object.
This collection can be used to register, deregister and validate the licenses to be used at the server.
All registered licenses are kept in the collection.

enaio® Page 341

enaio® server-api enaio®

/*

JavaScript version

Unlike the VBS version, this permits the use of

COM exceptions. If an error occurs, the application flow is
canceled and the system jumps to error handling.

*/

try

{

var oServer, oSession, oJob;

// create access object and log in

oServer = new ActiveXObject("OxSvrSpt.Server');

oSession = oServer.Login("root", "optimal"™, "localhost", "4000");
// add and delete licenses

oSession.Licenses.Add("ASC");

oSession.Licenses.Delete("ASC");

oSession.Licenses.Add("ASC");

// worked:o0)

WScript.Echo("ok™);

}
catch(ex)

// output errors occurred
WScript.Echo(ex.description);
}

Server Events

Description

You have the option to receive information about certain events through notifications sent by
the server.

VB

In Visual Basic, notifications are available using the event mechanism, as described in the
following example.

Private WithEvents m_oSession As OxSvrSpt.Session

Private m_oServer As OxSvrSpt.Server

public sub StartQ)

m_oServer _Properties("'NotifyNeeded") = True

Set m_oSession = m_oServer.Login(, , "localhost™, *4000")
end sub

Private Sub m_oSession_Notify(Job As OxSvrSpt. INotifyJob)
On Error GoTo ErrTrap

Dim strFileXML As String

strFileXML = Job. InputFileParameters(1).XML

" Return parameter
Job.OutputParameters.AddNewlntegerParameter "test', 100
Job.OutputParameters.AddNewStringParameter "meier', "huhu®
Exit Sub

ErrTrap:

MsgBox Err.Description

End Sub

VBScript

If you want to use notifications in a scripting-host environment (VBScript as vbs), you have to
generate the instance using the CreateObject() method of the WScript environment.

enaio® Page 342

enaio® server-api

Dim oServer

Set oServer = WScript.CreateObject("OxSvrSpt.Server'™, "oServer_")

enaio®

If the 1Server object is created using the WScript host, it is possible to specify a prefix for event

functions. With this mechanism, notifications can be intercepted.

Furthermore, the cal Iback functionalities of the OxSvrCom library are available through the
CreateJobSink() method and the CreateJobSink() method of the 1Session interface.

Dim oServer, oSession

Set oServer = WScript.CreateObject("OxSvrSpt.Server'™, "oServer_")

" Notifications will be used

oServer .Properties("'NotifyNeeded™) = True

" Use auto login

set oSession = oServer.Login(, , "localhost', '4000")

" This function is called by the server object if
" a notification appears within the specified rest period

" @param oJob

" contains the data for the notification call.

" This corresponds to the job object for the session. The only
" difference is that instead of the input parameters

" the output parameters contain the methods for creating

" parameters.

Sub oServer_Notify(oJob)

Dim strText

® Output the notification name

strText = "Name: " + oJob.Name + VvbCrLf

" Output all input parameters

strText = strText + "Parameter:" + vbCrLf
Dim oParameter

For Each oParameter In oJob.lInputParameters
strText = strText + " " + oParameter.Name +
vbCrLf

next

" Write result in a text box

MsgBox strText

End sub

XML Processing

Depending on the used XML encoding, XML data can be different in their binary appearance.

Example for determining the object definition

JavaScript version

enaio® Page 343

+ CStr(oParameter.Value) +

enaio® server-api enaio®

/*

JavaScript version

Unlike the VBS version, this permits the use of

COM exceptions. If an error occurs, the application flow is
canceled and the system jumps to error handling.

*/

try

{

var oServer, oSession, oJob;

// create access object and log in

oServer = new ActiveXObject("OxSvrSpt.Server');

oSession = oServer.Login("root", "optimal"™, "localhost", "4000");
// create job for the specification of the object definition
oJob = oSession.NewJob("dms.GetObjDef");

// set query parameter

oJob. InputParameters.AddNewlntegerParameter("Flags™, 0);
// execute job

oJob.Execute();

// determine XML from the output file

// During reading the XML character encoding

// is taken into account.

// After the end of this call the transferred

// file is automatically deleted.

WScript.Echo(oJob.OutputFileParameters(l).XML);

}
catch(ex)

// output errors occurred
WScript.Echo(ex.description);

VBScript version

Option Explicit

Dim oServer, oSession, oJob,o

Set oServer = CreateObject("OxSvrSpt.Server")

set oSession = oServer.Login("root", "optimal"™, "localhost™, "'4000")
set oJob = oSession.NewJob("dms.GetObjDef")

oJob. InputParameters.AddNewlIntegerParameter "Flags™, O

oJob.Execute

msgbox oJob.OutputFileParameters(l).XML, ,""Object definition"

Processing of Binary Data

Different options are available for the processing of binary data in the input and output parameters.
Both the IParameter and IFi leParameter objects provide two different methods.

8 1. Access via chunks (byte arrays)

8 2. Access via stream (1Stream)

enaio® Page 344

enaio® server-api

" Example script for byte-by-byte reading of binary data using the
" GetChunk method of a parameter.

Option Explicit

Dim oServer, oSession, oJob, oFileParameter

Set oServer = CreateObject("'OxSvrSpt.Server™)

set oSession = oServer.Login("root", "optimal', "localhost', 4000)

Set oJob = oSession._NewJob(*'dummy')
Set oFileParameter = oJob. InputFileParameters.AddTempFile()
oFileParameter.xml = "<?xml version="1.0" encoding="utf-16" ?><abc>&6u</abc>"

" Set stream to read at the starting position
oFileParameter_ResetStream

Dim abReadData

abReadData = oFileParameter.GetChunk(oFileParameter_ActualSize)
Dim cPos

For cPos = LBound(abReadData) + 1 To UBound(abReadData)

Dim bData

bData = Ascb(Midb(abReadData, cPos, 1))
WScript.Echo(cPos & ™":" & bData)

next

WScript.Echo(*'complete™)

Error Handling

enaio®

In any case of error, the OxSvrSpt library sends a COM error. In addition, errors of the 1Server
and 1Job objects are also recorded in the 1Error collection. In both cases, it is possible that more

than one error is returned. The COM error always corresponds to the first error in the IError
collection.

Schema of the Structure
The following illustrations show the structure of OxSvrSpt:

Collection
r Method) ir;uNr:}mber[including
] 2 $ - String (BSTR)
*_ Variant
: SUb J @ - ObjECt
[) ~ - Logical (VARIANT_BOOL)
Event D - Default
Property
Read Only Property
Write Only Property

Legend of the schema

enaio® Page 345

enaio® server-api enaio®

[ReadStringFromStreamAsAscii S]

>

[WriteStringToStreamAsAscii]

OpenSession @
Login @

\ A .
P

OxSvrSpt library

[Logout I CreatelobSink *]
[Notify I SetCallBack]

Properties D

v

Licenses

h 4

Session object

enaio® Page 346

enaio® server-api ‘ enaio®

OutputParametersD

A 4

InputParameters

A 4

A 4

QutputFileParameters

h 4

InputFileParameters

o

v

Errors

Job object

Properties D

Refresh

ltem(#) @ D
Item(S) @ D

Properties D collection

Check

Licenses <
Clear

Item(#) @ D 3

Item(5) @ D Add -

A Delete)

Licenses collection

OutputParametersD

Item(#) @ D
Item(S) @ D

OutputParameters D collection

enaio® Page 347

enaio® server-api enaio®

InputParameters
-
AddNewStringParameter @ Count #
>| AddNewlintegerParometer @ Remove @ éo
r e ~
AddNewBooleanParameter @
L Item(#) @ D
%
AddnewDoubleParameter @ ftem{S) @ D
\ N 2
g 4 5
AddNewDatetimeParameter @ AddParameter { @)
> &> <
AddNewXMLParameter @ Clear
\, o
AddNewByteParameter @

.

InputParameters collection

OutputFileParameters > Count # éo
4 Y
Item(#) @ D
Item(S) @ D
| S

OutputFileParameters collection

InputFileParameters = Count# —)o
4 Y
Item(#) @ D
Item(S) @ D
5 4
Remove @

v,

AddExistFile @ |

=
7

'

AddTempfFile @

r B

Clear

InputFileParameters collection

enaio® Page 348

enaio® server-api enaio®

Errors

Item(#) @ D
ltem(S) @ D

Errors collection

Value *D

XML S

GetChunk *

Stream @

Parameter object

enaio® Page 349

enaio® server-api ‘ enaio®

Value *D

AutoDelete »

XML $

ActualSize #

GetChunk *

Stream @

AppendChunk (*)

\ r,
')

ResetStream

ClearStream

. y

FileParameter object

Adding Watermarks to PDF Documents

As an alternative to adding watermark labels to PDF documents through settings in enaio®
administrator, there is the possibility to add watermarks using extended functions. To do so, select
PDF as the target format and set the value of job parameter "Watermark' to 1. The following
parameters consist of a prefix and a postfix, so the parameter "HeaderText" consists of the prefix
"Header" and the postfix " Text". The parameters are described in detail below:

Four areas for text entries can be defined with the following prefixes:
'Header", 'Footer’, 'Side’, and 'Center".

The following parameter postfixes are possible where one of the above-mentioned prefixes must be
used. All parameter postfixes are optional; however, at least one "*Text" parameter must be
specified so that the extended watermark is added, otherwise the enaio® administrator settings will
be applied. The postfixes are listed below:

Text (STRING):

The text which will be applied. If no text is specified, all other specifications for the respective
watermark type will be ignored and no text will be applied.

The following replacement variables are possible for the specified text:

Variable Description
#TIME# current time
#DATE# current date

enaio® Page 350

enaio® server-api enaio®

#USER# User name
#FULL_USER# full user name
#COMPUTER-IP# IP address
#COMPUTER-GU1D# GUID of the computer

#COMPUTER-NAME# Computer name

TextColor (INT):
0 -7 (0 is the default value) the following applies:

Value Description

0 Black

1 White

2 Yellow

3 Red

4 Green

5 Magenta
6 Cyan

7 Blue

Alternatively:

TextColorRGB (STRING): 0-255,0-255,0-255 (RGB values for a color, separated by commas)
Font (STRING): Helvetica..., Times..., or Courier... (Helvetica is default)

FontBold (INT): 0 or 1 (1 -> bold, 0 -> default)

Fontltalic (INT): 0 or 1 (1 -> italic, 0 -> default)

FontSize (INT): font size in points (10 is default)

With the following parameters, the text position can be specified:

Position (INT): 0-8 (0 is default) 0 for 'Header', 1 for 'Footer', 4 for 'Side' and 8 for 'Center’

Value Description

0 Top left

enaio® Page 351

enaio® server-api

Bottom left
Top right
Bottom right

Left centered

Right centered

Top centered

7 Bottom centered

8 Centered centered

OffsetX (INT): (0 is default) offset in mm from the left page margin.

OffsetY (INT): (0 is default) offset in mm from the top margin.

PlaceType (INT): 0-2 (0 is default) 0 -> all pages, 1 -> odd pages, 2-> even pages
FillStyle (INT): 0-2 (0 is default) 0 -> filled, 1 -> shadow outlines, 2 -> shadow fill

Angle (INT): 0-360 (0 is default) angle in degrees

An example:

Set oServerJob = o.CreateServerJob('cnv.ConvertDocument')

oServerJob
oServerJob
oServerJob
oServerJob
oServerJob
oServerJob
oServerJob
1

oServerJob
oServerJob
oServerJob
oServerJob

- Note: Instead of the prefixes 'Header' and 'Footer’, you can also use 'Side’ or ‘Center".

-AddInputParameter
-AddInputParameter
-AddInputParameter
-AddInputParameter
-AddInputParameter
-AddInputParameter

-AddInputParameter
-AddInputParameter
-AddInputParameter
-AddInputParameter

"FooterFontSize",
"FooterFontBold",
"FooterFontltalic",
"FooterTextColorRGB",

Example for positioning with the 'Center’ type:

oServerJob.
oServerJob.
oServerJob.
oServerJob.
oServerJob.

- Note: Please note case sensitivity. (Job parameters are generally case sensitive).

AddInputParameter
AddInputParameter
AddInputParameter
AddInputParameter
AddInputParameter

Data Structures

_INotificationEvents

Description:

enaio®

"CenterAngel', "45"
"CenterOffsetXx', "-10", 2
"CenterOffsetY"™, "10", 2
"CenterPlaceType",
"CenterFillStyle”,

Page 352

nge

"1
TR
"y

4

2

ne
now

-AddFile "myfile"” (File that will be converted)
"DestinationFormat', "pdf"', 1
"HeaderText'", '"'Header', 1
"HeaderFont"™, "Courier", 1
"HeaderFontSize'", "10", 2
""HeaderTextColor",
"FooterText", " Created by #USER#, #DATE#, #TIME#",

, 2

, 2

2

, 2
''255,0,0",

, 1
, 1

1

enaio®

enaio® server-api enaio®

_INotificationEvent is an event interface for handling notifications.

import "OxSvrSpt.idl"”

Public methods:

void Notify([in, out] INotifyJob **Job)

Parameter:

[in, out]: Job interface for accessing the input and output parameters of the notification. This
interface is similar to the 1Job interface.

I[Error
Description:

IError represents an error message sent by the server.

import "OxSvrSpt.idl"”

Errors

ResponseResult #
ResultCode#
Count #
ra Y
Item(#) @ D SourceName $
Item(S) @ D
\ y, SourceCode #
FaultString$
FaultCode #
Infolist S

Properties:

long FaultCode [get]
BSTR SourceName [get]
long SourceCode [get]
BSTR FaultString [get]
BSTR InfoList [get]
Documentation of properties:
§ long FaultCode [get]

FaultCode returns the error code.
Parameter:

[out]: pval (VB return value) error description

enaio® Page 353

enaio® server-api enaio®

§ BSTR SourceName [get]
SourceName returns the name of the source in which the error occurred.
Parameter:
[out]: pval (VB return value) identifier of the source
§ long SourceCode [get]
SourceCode returns the source code line in which the error occurred.
Parameter:
[out]: pval (VB return value) identifier of the source
§ BSTR FaultString [get]
FaultString returns the error description.
Parameter:
[out]: pval (VB return value) error description
§ BSTR InfolList [get]
InfolList see documentation of OxSvrCom.

Parameter:

[out]: pval (VB return value) InfoList

|[Errors
Description:

IErrors is a collection in which errors are collected that were sent by the server during an
operation.

import "OxSvrSpt.idl"”
Note:

For the individual entries, the name "errorX" is used as a keyword, X being the position of the
error in the collection. This keyword is used in very rare cases. Instead, the collection should be
queried either using the ForEach statement or through the position.

enaio® Page 354

enaio® server-api enaio®

Errors

ResponseResult #
ResultCode#
Count#
4)
ﬁzggj g g —>-—) SourceName $
~ 4 SourceCode #
FaultString$
FaultCode#
Infolist$
Properties:
long Count [get]
long ResponseResult [get]
IError ltem([in] VARIANT Index) [get]
Documentation of properties:
§ long Count [get]
Count returns the number of items of the collection.
Parameter:
[out]: pINumber (VB return value) Number of elements in the collection.

§ I1Error Item([in] VARIANT Index) [get]
Item returns the specified item of the collection using the key or its position.

If a position is specified outside of the valid index, an error with the error value
errCollectionlndexOutOfRange is returned. If the item cannot be found, an error with the
error value errCol lectionltemNotFound is returned.

Parameter:
[in]: Index Position and name of the requested element
[out]: pptltemassociated JobError object
§ long ResponseResult [get]
ResponseResult returns the return value of the server call which caused the error.
Parameter:
[out]: pval (VB return value) return value of the server call.
§ long ResultCode [get]
ResultCode returns the last error value of the server call.

enaio® Page 355

enaio® server-api enaio®

Parameter:

[out]: pval (VB return value) error value for the server.

IFileParameter
Description:

IFi leParameter represents both an input parameter and an output parameter of a job that
contains a file.

import "OxSvrSpt.idl"”

The IFileParameter interface provides methods for accessing the Fi leParameter and the
related file.

For accessing the file, similar to the 1Parameter interface there are stream, chunk, and XML
functionalities.

As long as no file access functionalities are invoked, the file will not be opened. When accessing a
method for the first time that operates with a file, it will be opened in the
modeReadWr i te|shareDenyNone mode. With UnloadStream it is possible to close this method
explicitly in order to enable exclusive access for other processes.

Value *D

AutoDelete

XML S

ActualSize #

GetChunk *

Stream @
AppendChunk (*)

ResetStream

r,
=

~y"

ClearStream

\ J

Public methods:

HRESULT Stream ([out, retval] IStream ** ppStream)

HRESULT AppendChunk ([in]VARIANT Data)

HRESULT GetChunk ([in] long Length, [out, retval] VARIANT * pResult)
HRESULT ResetStream ()

HRESULT ClearStream ()

enaio® Page 356

enaio® server-api enaio®

HRESULT UnloadStream ([in, defaultvalue(-1)] VAIRANT_BOOL AutoReload)
Properties:

BSTR FileName [get, set]

long ActualSize [get]

BSTR XML [get, set]

VARIANT_BOOL AutoDelete [get, set]

Documentation of the element functions:

§ HRESULT AppendChunk (Lin]VARIANT Data)

AppendChunk appends additional bytes to the stream.

When accessing the stream functionalities of the interface for the first time, the related file is
opened and kept open. If another caller subsequently requires exclusive access to this file, it can
be released by invoking the UnloadStream method.

After invoking this method, the position pointer of the internal stream is at the end of the
stream.

Parameter:
[in]: Data contains the data that will be appended to the stream.

The data will be converted to VT_ARRAY | VT_UI1 and further processed using the OLE32
ChangeType method. If, for example, a BSTR is passed, the data will be processed as
WIDECHAR. Writing 8-bit characters into the stream can be done with the methods of the
He Iper-COM object.

Example:

Dim abWriteData() As Byte
ReDim abWriteData(0O To 5)
abWriteData(0)
abWriteData(l)
abWriteData(2)
abWriteData(3)
abWriteData(4)
abWriteData(b)
oFileParameter.AppendChunk abWriteData

§ HRESULT ClearStream ()
ClearStream deletes the data of the stream and of the related file.
§ HRESULT GetChunk ([in] long Length, [out, retval] VARIANT * pResult)

AaArhWNEFLO

GetChunk returns the specified number of bytes from the stream.

When accessing the stream functionalities of the interface for the first time, the related file is
opened and kept open. If another caller subsequently requires exclusive access to this file, it can
be released by invoking the UnloadStream method.

This method starts reading the data in the stream beginning at the current position. If the end of
the stream is reached before the required number of characters was read, only those characters
read so far will be returned. The number of read characters can be determined with the size of
the returned buffer (see example).

Parameter:
[in]: Length Number of maximum returned bytes.

enaio® Page 357

enaio® server-api enaio®

[out]: pResult (VB return parameter) contains the bytes read. These will be returned in a
variant of type VT_ARRAY|VT_UI1.

Example:

The following program section corresponds to:

Dim var

var = oFileParameter.Value

However, the current position of the stream is also preserved there
Set stream to read at the starting position
oFileParameter._ResetStream

Dim abReadData() As Byte

" Adapt array to the required size

ReDim abReadData(0 To oParameter.ActualSize - 1)

" Read data

abReadData = oFileParameter.GetChunk(oParameter.ActualSize)

" Determine the size of the data read using the data returned
Dim nSize As Long

nSize = UBound(abReadData) - LBound(abReadData)

§ HRESULT ResetStream ()
ResetStream resets the data stream to the beginning.

When accessing the stream functionalities of the interface for the first time, the related file is
opened and kept open. If another caller subsequently requires exclusive access to this file, it can
be released by invoking the UnloadStream method.

§ HRESULT Stream ([out, retval] IStream ** ppStream)
Stream provides the stream of binary data
The stream contains the binary data of the file.

When accessing the stream functionalities of the interface for the first time, the related file is
opened and kept open. If another caller subsequently requires exclusive access to this file, it can
be released by invoking the UnloadStream method.

Parameter:
[out]: ppStream (VB return parameter) contains the stream as 1Stream interface.

§ HRESULT UnloadStream ([in, defaultvalue(-1)] VAIRANT_BOOL AutoReload)
UnloadStream unloads the internal Stream object

If external references no longer refer to the Stream object, the object is released and the related
file is closed. Access to a stream object can be established again using a method of the object.

Note:

If AutoDelete is set to true and the Stream is unloaded, the related file will be deleted in case
no other reference to the stream exists.

Parameter:

[in]: AutoReload indicates whether the next time an IFi leParameter method that requires the
Stream is accessed it is again reinitialized automatically. Especially when using debug
environments that reload the respective properties automatically, problems may occur when the file
is to be processed exclusively by another program. In this case, the VARIANT_FALSE value should
be used for this parameter. For languages that support default parameters, this value is set to
VARIANT_TRUE if no specification was made.

Documentation of properties:

enaio® Page 358

enaio® server-api enaio®

§ long ActualSize [get]
ActualSize returns the size of the data stream in bytes.

When accessing the stream functionalities of the interface for the first time, the related file is
opened and kept open. If another caller subsequently requires exclusive access to this file, it can
be released by invoking the UnloadStream method.

Parameter:

[out]: pval (VB return parameter) contains the size of the data stream.
§ VARIANT_BOOL AutoDelete [get, set]

AutoDe lete gets and sets whether the file of this object should be deleted automatically after
being used.

The automatic file deletion is controlled in the related file stream. Therefore it is possible to
continue working with the Stream even after the deletion of the Fi leParameter object. If
none of the stream functionalities was used, the FileParameter checks at release whether the file
should be deleted.

Parameter:
[out]: pval (VB return parameter) will the file be automatically deleted?

The automatic file deletion is controlled in the related file stream. Therefore it is possible to
continue working with the Stream even after the deletion of the Fi leParameter object. If none
of the stream functionalities was used, the Fi leParameter checks at release whether the file
should be deleted.

Parameter:

[in]: newval will the file be automatically deleted?

§ BSTR FileName [get, set]
FileName returns the full name of the file and sets a new file name.
This property is a default property of the interface
Parameter:

[out]: pval (VB return parameter) Name of the file

If another file is already being processed, its resources will be released. If the assignment of a new
file name fails (the file cannot be found), an error will be sent and the old object properties remain
unchanged.

Parameter:

[in]: newval New file name
§ BSTR XML [get, set]

XML gets the file parameter content as an XML string and writes the XML string to be passed
into the related file.

When accessing the stream functionalities of the interface for the first time, the related file is
opened and kept open. If another caller subsequently requires exclusive access to this file, it can
be released by invoking the UnloadStream method.

The output XML string is read out with the XML parser.

enaio® Page 359

enaio® server-api enaio®

If no valid XML string can be generated from the data, an error is sent. The error message is
related to the XML parser used for the validation (MS-XML4).

The position pointer of the Stream remains unchanged when invoking this property.
Parameter:

[out]: pval (VB return parameter) contains the data decoded as an XML string.

Old data of the file will be overwritten when invoking this property. After invoking this
property, the position pointer of the Stream is at the beginning of it.

Data will be written into the file according to the coding specified in the XML string.

The passed data will be validated during conversion. If data non-compliant with XML are
passed, an error will be sent. In this case, the Stream has the length 0. The error message is
related to the XML parser used for the validation (MS-XML4).

Parameter:

[in]: newval Basic string with XML data.

IHelper
Description:

IHe lper provides the general help functions for the access from script environments.

import "OxSvrSpt.idl"”

OxSvrSpt

- [ReadStringFromStreamAsAscii §]
[WriteStringToStreamAsAscii]

[OpenSession @ Errors @

[Login @ Properties@ D

Public methods:

HRESULT WriteStringToStreamAsAscii ([in] IStream * Stream, [in] BSTR
Text)

enaio® Page 360

enaio® server-api enaio®

HRESULT ReadStringFromStreamAsAscii ([in] I1Stream * Stream, [in] long
Length, [out, retval] BSTR * pOut)

HRESULT CreateStream (Jout, retval] IStream ** ppVval)

Documentation of the element functions:

§ HRESULT CreateStream (Jout, retval] IStream ** ppVval)
CreateStream generates an new 1Stream object and returns it.

§ HRESULT ReadStringFromStreamAsAscii ([in] IStream * Stream, [in] long
Length, [out, retval] BSTR * pOut)

ReadStringFromStreamAsAscii reads text as ASCII characters from the stream.

A specified number of ASCII characters is read from the stream and returned as a basic string.
If the Stream contains less than the specified number of characters, all existing characters up to
the end of the stream will be read and returned. The method starts reading at the current
position of the position pointer of the Stream. After reading, the position pointer remains at
the position where it was located after the operation.

Parameter:
[in]: Stream I Stream instance which should be read from.
[in]: Length Number of maximum read characters.

[out]: pOut (VB return parameter) character that is read from the stream and converted into a
BSTR.

§ HRESULT WriteStringToStreamAsAscii ([in] IStream * Stream, [in] BSTR
Text)

WriteStringToStreamAsAsci i writes the transferred text to the specified Stream.

The text expected as BSTR is converted to ASCII and written to the Stream. Before writing, the
position pointer of the Stream is set to its end.

Parameter:
[in]: Stream Stream in which data will be written.
[in]: Text The text as basic string that will be transferred to the stream.

lInputFileParameters
Description:

I InputFileParameters is a collection for managing the input files of a Job.

import "OxSvrSpt.idl"”

enaio® Page 361

enaio® server-api enaio®

v

Count# —)o

InputFileParameters

7 S
Item(#) @ D
Item(S) @ D

\ 2z

Remove @

.
A

AddExistFile @

AddTempFile @

’,
' n

Clear

Public methods:
HRESULT Delete ([in] VARIANT Index)
HRESULT Clear O

HRESULT AddExistFile ([in] BSTR FileName, [in, defaultvalue(0)]
VARIANT_BOOL AutoDelete, [out, retval] IFileParameter ** ppNewParameter)

HRESULT AddTempFile ([in, defaultvalue(Oxffff)] VARIANT_BOOL AutoDelete,
[in, defaultvalue(''tmp'™)] BSTR FileExtension, [out, retval]
IFileParameter ** ppNewParameter)

Properties:
long Count [get]
IFileParameter Item([in] VARIANT Index) [get]

Documentation of the element functions:

§ HRESULT AddExistFile ([in] BSTR FileName, [in, defaultvalue(0)]
VARIANT _BOOL AutoDelete, [out, retval] IFileParameter **
ppNewParameter)

AddExistFile adds an existing file as a new Fi leParameter and returns it.
The transferred file is not deleted by default.

It is checked whether the file exists. But it will be opened only when its data is accessed using the
respective methods of the IFileParameter interface.

Parameter:

[in]: Fi leNamename of the file.

[in]: AutoDelete (default value: VARIANT_FALSE) indicates whether the file will be
automatically deleted by this class after use.

[out]: ppNewParameter (VB return value) associated Fi leParameter object.

§ HRESULT AddTempFile ([in, defaultvalue(Oxffff)] VARIANT_BOOL
AutoDelete, [in, defaultvalue('tmp'™)] BSTR FileExtension, [out,
retval] IFileParameter ** ppNewParameter)

enaio® Page 362

enaio® server-api enaio®

AddTempFi le generates a Fi le parameter and automatically creates a temporary file for the
data transfer to the server

This file is deleted by default after being used.

If required, the name of the file can be determined using the FileName property of the returned
IFileParameter object.

Parameter:

[in]: AutoDelete (default value: VARIANT _FALSE) indicates whether the file will be
automatically deleted by this class after use.

[in]: FileExtension (default value: tmp) indicates a file extension for the temporary file.
[out]: ppNewParameter (VB return value) associated Fi leParameter object.
§ HRESULT Clear ()
Clear removes all items of the collection.
§ HRESULT Delete ([in] VARIANT Index)
De lete deletes the parameter based on the position in the list or on the name.
Parameter:
[in]: Index Name or position of the license entry to be deleted.
Documentation of properties:
§ long Count [get]
Count returns the number of items of the collection.
Parameter:
[out]: pINumber (VB return value) Number of elements in the collection.
§ IFileParameter Item([in] VARIANT Index) [get]
I'tem returns the specified item of the collection using the key or its position.
If a position is specified outside of the valid index, an error with the error value
errCollectionlndexOutOfRange is returned. If the item cannot be found, an error
with the error value errCollectionltemNotFound is returned.
Parameter:
[in]: Index Position and name of the requested element.

[out]: ppltem (VB return value) associated Fi leParameter object.

IInputParameters
Description:

I InputParameters is a collection for creating and managing the InputParameters of a Job.

import "OxSvrSpt.idl"

enaio® Page 363

enaio® server-api enaio®

InputParameters
AddNewStringParameter @ Count#
> AddNewintegerParameter @ Remo ve @ éo
i Y ~
AddNewBooleanParameter @
Item(#) @ D
AddnewDoubleParameter @ ! tem (‘S) @ D
Z

a'g

AddParameter (@)

AddNewDatetimeParameter @

'

o d

AddhewByteParameter @

Ik
AddNewXMLParameter @ I Cl ear

Public methods:

HRESULT AddNewStringParameter ([in] BSTR Name, [in] BSTR Value, [out,
retval] IParameter ** ppVval)

HRESULT AddNewlntegerParameter ([in] BSTR Name, [in] long Value, [out,
retval] IParameter ** ppVval)

HRESULT AddNewBooleanParameter ([in] BSTR Name, [in] VARIANT_BOOL Value,
[out, retval] IParameter ** ppVval)

HRESULT AddNewDoubleParameter ([in] BSTR Name, [in] double Value, [out,
retval] IParameter ** ppVval)

HRESULT AddNewDatetimeParameter ([in] BSTR Name, [in] DATE Value, [out,
retval] IParameter ** ppVval)

HRESULT AddNewXMLParameter ([in] BSTR Name, [in, defaultvalue('"')] BSTR
XML, [Jout, retval] IParameter ** ppVal)

HRESULT AddNewByteParameter ([in] BSTR Name, [in, optional] VARIANT
Value, [out, retval] IParameter ** ppVal)

HRESULT AddParameter ([in] IParameter * Parameters)

HRESULT Remove ([in] VARIANT Index, [out, retval] IParameter ** ppVal)
HRESULT Clear

Properties:

long Count [get]

IParameter Item([in] VARIANT Index) [get]

Documentation of the element functions:

§ HRESULT AddNewBooleanParameter ([in] BSTR Name, [in] VARIANT_BOOL
Value, [out, retval] IParameter ** ppVval)

AddNewBooleanParameter generates a new Boolean parameter, adds it to the collection, and
returns it. The parameter name must not be an empty string, otherwise an error will be

enaio® Page 364

enaio® server-api enaio®

returned. If any attempts are made to add a parameter with a name that already exists, an error
will be caused.

Parameter:

[in]: Name Parameter name.
[in]: value Initialization value of the parameter.
[out]: ppVval (VB return parameter) generated and initialized parameter object.
Exception handling:

errinputParametersCantCreate (1101) Unable to create the parameter. In this case, no
further information is available.

errParameterNameEmpty (1201) No name was specified for the parameter.

errParameterDoubleName (1202) A parameter with this name already exists.

§ HRESULT AddNewByteParameter ([in] BSTR Name, [in, optional] VARIANT
Value, [out, retval] IParameter ** ppVal)

AddNewByteParameter generates a new Byte parameter, adds it to the collection, and returns
it. The parameter name must not be an empty string, otherwise an error will be returned. If any
attempts are made to add a parameter with a name that already exists, an error will be caused.

Upon initialization, the value can be passed as a string or added subsequently using the
AppendChunk or Stream functions. If Value is to be initialized later, a variant of type
VT_NULL or VT_ERROR must be passed.

In VB or VBScript, the Value parameter of the method must not be specified, if binary data is
to be added to the parameter object at a later point.

Parameter:

[in]: Name Parameter name.
[in]: value Initialization value of the parameter.
[out]: ppVval (VB return parameter) generated and initialized parameter object.
Exception handling:

errinputParametersCantCreate (1101) Unable to create the parameter. In this case, no
further information is available.

errParameterNameEmpty (1201) No name was specified for the parameter.

errParameterDoubleName (1202) A parameter with this name already exists.
Example:

Dim oParameter As OxSvrSpt.Parameter
Set oParameter = m_olnputParameters.AddNewByteParameter(strName)

§ HRESULT AddNewDatetimeParameter ([in] BSTR Name, [in] DATE Value,
[out, retval] IParameter ** ppVal)
AddNewDatetimeParameter generates a new Double parameter, adds it to the collection, and
returns it. The parameter name must not be an empty string, otherwise an error will be
returned. If any attempts are made to add a parameter with a name that already exists, an error
will be caused. VT _8

Parameter:

enaio® Page 365

enaio® server-api enaio®

[in]: Name Parameter name.
[in]: value Initialization value of the parameter.
[out]: ppVval (VB return parameter) generated and initialized parameter object.
Exception handling:

errInputParametersCantCreate (1101) Unable to create the parameter. In this case, no
further information is available.

errParameterNameEmpty (1201) No name was specified for the parameter.

errParameterDoubleName (1202) A parameter with this name already exists.

§ HRESULT AddNewDoubleParameter ([in] BSTR Name, [in] double Value,
[out, retval] IParameter ** ppVval)

AddNewDoubleParameter generates a new Double parameter, adds it to the collection, and
returns it. The parameter name must not be an empty string, otherwise an error will be
returned. If any attempts are made to add a parameter with a name that already exists, an error
will be caused. VT_8

Parameter:
[in]: Name Parameter name.
[in]: value Initialization value of the parameter.
[out]: ppVval (VB return parameter) generated and initialized parameter object.
Exception handling:

errInputParametersCantCreate (1101) Unable to create the parameter. In this case, no
further information is available.

errParameterNameEmpty (1201) No name was specified for the parameter.

errParameterDoubleName (1202) A parameter with this name already exists.

§ HRESULT AddNewlntegerParameter ([in] BSTR Name, [in] long Value, [out,
retval] IParameter ** ppVval)

AddNewIntegerParameter generates a new Integer parameter, adds it to the collection, and
returns it.

The parameter name must not be an empty string, otherwise an error will be returned. If any
attempts are made to add a parameter with a name that already exists, an error will be caused.
VT_l4

Parameter:
[in]: Name Parameter name.
[in]: value Initialization value of the parameter.
[out]: ppVval (VB return parameter) generated and initialized parameter object.
Exception handling:

errinputParametersCantCreate (1101) Unable to create the parameter. In this case, no
further information is available.

errParameterNameEmpty (1201) No name was specified for the parameter.

enaio® Page 366

enaio® server-api enaio®

errParameterDoubleName (1202) A parameter with this name already exists.

§ HRESULT AddNewStringParameter ([in] BSTR Name, [in] BSTR Value, [out,
retval] IParameter ** ppVval)

AddNewStringParameter generates a new String parameter, adds it to the collection, and
returns it.

The parameter name must not be an empty string, otherwise an error will be returned. If any
attempts are made to add a parameter with a name that already exists, an error will be caused.

Parameter:

[in]: Name Parameter name.
[in]: value Initialization value of the parameter.
[out]: ppVval (VB return parameter) generated and initialized parameter object.
Exception handling:

errinputParametersCantCreate (1101) Unable to create the parameter. In this case, no
further information is available.

errParameterNameEmpty (1201) No name was specified for the parameter.

errParameterDoubleName (1202) A parameter with this name already exists.
Example:
C++

try
{

I InputParametersPtr spParameters(spJob->InputParameters);

_bstr_t bstrParameterName(L"Name");

_bstr_t bstrParameterValue(L"Value™);

spParameters->AddNewStringParameter(bstrParameterName, bstrParameterValue);

catch(_com_erroré& e)

{

// Determine error description

_bstr_t bstrError = e_Description();

// if no error description was delivered by the COM error object...
if(bstrError.length() == 0)

// ... determine the system error message
bstrError = e_ErrorMessage();

// TODO bstrError contains the error description for
// further processing.

}
§ HRESULT AddNewXMLParameter ([in] BSTR Name, [in, defaultvalue('"")]
BSTR XML, [out, retval] IParameter ** ppVval)

AddNewXMLParameter generates a new XML parameter, adds it to the collection, and returns
it. The parameter name must not be an empty string, otherwise an error will be returned. If any
attempts are made to add a parameter with a name that already exists, an error will be caused.

Upon initialization, the value can be passed as a string or added subsequently using the
AppendChunk or Stream functions.

In VB or VBScript, the XML parameter of the method must not be specified, if XML data is to
be added to the parameter object at a later point.

enaio® Page 367

enaio® server-api enaio®

Parameter:

[in]: Name Parameter name.
[in]: XML Initialization value of the parameter.
[out]: ppVval (VB return parameter) generated and initialized parameter object.
Exception handling:

errInputParametersCantCreate (1101) Unable to create the parameter. In this case, no
further information is available.

errParameterNameEmpty (1201) No name was specified for the parameter.

errParameterDoubleName (1202) A parameter with this name already exists.
Example:

Dim oParameter As OxSvrSpt.Parameter
Set oParameter = m_olnputParameters.AddNewXMLParameter (strName)

§ HRESULT AddParameter ([in] IParameter * Parameters)
AddParameter adds the passed parameter to the collection.
With this method, it is possible to pass parameters of other calls without a copy.
Parameter:

[in]: Parameter Parameter to be added.
Exception handling:

errinputParametersCantCreate (1101) Unable to create the parameter. In this case, no
further information is available.

errParameterNameEmpty (1201) No name was specified for the parameter.

errParameterDoubleName (1202) A parameter with this name already exists.
Example:
Dim oParameter As OxSvrSpt.Parameter
:-ﬁill parameter in another job (call)
ﬁ;élnputParameters.AddParameter(oParameter)
§ HRESULT Clear ()
Clear removes all items of the collection.
§ HRESULT Remove ([in] VARIANT Index, [out, retval] IParameter ** ppVval)
Remove removes the entry with the passed identifier from the parameter list and returns it.
If the specified entry cannot be found, an error is returned.
Parameter:

[in]: Index Name or position of the entry that will be removed from the parameter collection.
If the Index parameter is passed as Integer or Long, the item at the respective position is
searched for. In C++, a variant of type VT_12 or TV_14 must be passed in this case. If the Index
parameter is passed as a string (VT_BSTR), the name of the item is searched for.

[out]: ppval (VB return parameter) returns the removed parameter object.

enaio® Page 368

enaio® server-api enaio®

Exception handling:
errCollectionltemNotFound (1304) Unable to find the requested entry
errCollectionlndexOutOfRange (1303) The requested index is out of range.
Documentation of properties:

§ long Count [get]

Count returns the number of items of the collection.

Parameter:

[out]: pINumber (VB return value) Number of elements in the collection
§ IParameter Item([in] VARIANT Index) [get]
Item returns the specified item of the collection using the key or its position.

If a position is specified outside of the valid index, an error with the error value
errCollectionlndexOutOfRange is returned. If the item cannot be found, an error with the
error value errCol lectionltemNotFound is returned.

Parameter:
[in]: Index Position and name of the requested element

[out]: ppltem Associated parameter object

lJob

Description:

1Job encapsulates access to the parameters and a Job call.

import "OxSvrSpt.idl"”

-
.,

>| OutputParametersD

>| InputParameters

>| OutputFileParameters

>! InputFileParameters

Errors

enaio® Page 369

enaio® server-api enaio®

Public methods:

HRESULT Execute ()

Properties:

I0utputParameters OutputParameters [get]

BSTR Name [get]

I InputParameters InputParameters [get]

IErrors Errors [get]

I InputFileParameters InputFileParameters [get]
I0utputFileParameters OutputFileParameters [get]

Documentation of the element functions:
§ HRESULT Execute ()

After calling this method, the output parameters are available in the collections
OutputParameters and OutputFileParameters. If an error occurs when executing the
Job, a COM error is thrown. This is the case both for logical and system errors. The COM error
contains the first message of the Error collection. All other messages can be found in the Error
collection with the Errors property of this object.

Examples:
VB

" Log in

Dim oServer As New OxSvrSpt._Server

Dim oSession As OxSvrSpt.Session

Set oSession = oServer.Login("root™, "optimal', "localhost", '4000",
pwNotEncrypted)

" Create job
Dim oJob As OxSvrSpt.Job
Set oJob = oSession.NewJob("'dms.GetResultList')

" Add parameter

Dim oParameter As OxSvrSpt.Parameter

oJob. InputParameters.AddNewlntegerParameter "Flags'™, 16

Set oParameter = oJob. InputParameters.AddNewXMLParameter ("'XML'")
Dim oDomDocument As New MSXMLZ2.DOMDocument40

Dim bSuccess As Boolean

bSuccess = oDomDocument.Load(*'c:\dmstest.xml')
oDomDocument.save oParameter.Stream

" Execute job
oJob.Execute

" Read XML from the XML file parameter
Dim strXML As String
strXML = oJob.OutputFileParameters(1).XML

C++ using the import mechanism

enaio® Page 370

enaio® server-api enaio®

#import "../Debug/OxSvrSpt.dll" raw_method_prefix("'raw_")
using namespace OxSvrSpt;

try

{

_bstr_t bstrUser = L"root";
_bstr_t bstrPassword = L"optimal™;
_bstr_t bstrServer = L"adunkel";
_bstr_t bstrPort = L"4000";

_bstr_t bstrJobName L"krn.GetServerlinfo';

OxSvrSpt: :1ServerPtr spServer(__uuidof(OxSvrSpt::Server));

OxSvrSpt: :1SessionPtr spSession = spServer->Login(bstrUser, bstrPassword,
bstrServer, bstrPort, pwNotEncrypted);

OxSvrSpt: :1JobPtr spJob = spSession->NewJob(bstrJobName);
spJob->InputParameters->AddNewlntegerParameter(L"Flags", 0);
spJob->InputParameters->AddNewlIntegerParameter(L"Info", 1);
spJob->Execute();

_variant_t varName = spJob->OutputParameters->Getltem(L"Name™)->Value;

catch(_com_erroré& e)

_bstr_t bstrError = e_Description();
if(bstrError._length() ==)

bstrError = e_ErrorMessage();

3

AfxMessageBox(bstrError);

}
Properties documentation:

§ I1Errors Errors [get]
Errors returns the collection with the errors that occurred at the server.
This collection contains objects of the 1Error type.
Parameter:

[out]: pval (VB return value) Collection with the errors that occurred

§ I1lnputFileParameters InputFileParameters [get]

InputFileParameters returns the collection with the Fi leParameters for the transfer to
the server

This collection contains objects of the IFi leParameters type
Parameter:

[out]: pval (VB return value) Collection with the files for the server call

§ I1lnputParameters InputParameters [get]
InputFileParameters returns the collection of InputParameters.
Parameter:

[out]: pval (VB return value) Collection of the input parameters

§ BSTR Name [get]
Name returns the name of the Job.

The name of the Job is entered when the Job object is created and cannot be modified
afterwards.

enaio® Page 371

enaio® server-api

Parameter:

[out]: pval (VB return value) Job name

§ [I10utputFileParameters OutputFileParameters [get]

enaio®

OutputFi leParameters returns the collection with the Fi leParameters that are provided

by the server after a Job call.

This collection contains objects of the IFi leParameters type

Parameter:

[out]: pval (VB return value) Collection with the result files after a server call.

§ I1O0utputParameters OutputParameters [get]

OutputParameters returns the collection of OutputParameters.

This property is a default property of the 1Job interface.

Parameter:

[out]: pval (VB return value) Collection of the output parameters for the Job

ILicenses
Description:

ILicenses is a collection for managing licenses.

import "OxSvrSpt.idl"

Count# Check
Licenses >
4 B Clear
Item(#) @ D
Item(S) @ D aad
_ Y Delete

Public methods:

HRESULT Add ([in] BSTR Name)
HRESULT Delete ([in] VARIANT Index)
HRESULT Clear

HRESULT Check ([in] BSTR Name)
Properties:

long Count [get]

BSTR Item([in] VARIANT Index) [get]

Documentation of the element functions:
§ HRESULT Add ([in] BSTR Name)
Add adds a new license string.

enaio® Page 372

enaio® server-api enaio®

If any attempts are made to add a license string twice, the second string will be ignored. No error
will be thrown. The transferred license string is converted into capitals and managed internally.

Parameter:
[in]: Name License string to be added
§ HRESULT Check ([in] BSTR Name)
Check validates the entered license at the server without checking it in using LicLogin.
This method operates through the server job "lic.CheckLicense"
If the validation fails, the first error in the error collection is returned as a COM error.
Parameter:
[in]: Name the license to be checked
§ HRESULT Clear ()
Clear removes all items of the collection.
§ HRESULT Delete ([in] VARIANT Index)
De lete deletes the license entry based on the position in the list or on the name.
Parameter:
[in]: Index Name or position of the license entry to be deleted.
Documentation of properties:
§ long Count [get]
Count returns the number of items of the collection.
Parameter:
[out]: pINumber (VB return value) Number of elements in the collection
§ BSTR Item([in] VARIANT Index) [get]
Item returns the specified item of the collection using the key or its position.

If a position is specified outside of the valid index, an error with the error value
errCollectionlndexOutOfRange is returned. If the item cannot be found, an error with the
error value errCol lectionltemNotFound is returned.

Parameter:
[in]: Index Position and name of the requested element

[out]: pltem (VB return value) associated license that corresponds to the key

ILogger
Description:

ILogger is an interface for accessing OS-Logger.
import "OxSvrSpt.idl"”

Public methods:

enaio® Page 373

enaio® server-api enaio®

HRESULT Log ([in] BSTR Message, [in] LogLevelEnum Level, [in,
defaultvalue(''"")] BSTR FileName, [in, defaultvalue('"")] BSTR Function,
[in, defaultvalue(0)] long Line)

HRESULT Error ([in] BSTR Message, [in, defaultvalue('"")] BSTR Function,
[in, defaultvalue(0)] long Line)

HRESULT Info ([in] BSTR Message, [in, defaultvalue('''')] BSTR Function,
[in, defaultvalue(0)] long Line)

HRESULT MethodEntry ([in] BSTR Message, [in, defaultvalue(''")] BSTR
Function, [in, defaultvalue(0)] long Line)

HRESULT Debug ([in] BSTR Message, [in, defaultvalue(’"")] BSTR Function,
[in, defaultvalue(0)] long Line)

HRESULT Trace ([in] BSTR Message, [in, defaultvalue(’'")] BSTR Function,
[in, defaultvalue(0)] long Line)

HRESULT Init ([in] BSTR FileName, [in, defaultvalue(’'")] BSTR Alias)
Documentation of the element functions:

§ HRESULT Debug ([in] BSTR Message, [in, defaultvalue(')] BSTR
Function, [in, defaultvalue(0)] long Line)

Debug logs the transferred message in the debug level.
Parameter:

[in]: Message Message to be transferred

[in]: FunctionName of the function in which the log entry is made. If it is not specified, an empty
string is displayed in the log.

[in]: Line Source text lines to be logged. If it is not specified, the value 0 will be displayed in
the log.

§ HRESULT Error ([in] BSTR Message, [in, defaultvalue('')] BSTR
Function, [in, defaultvalue(0)] long Line)

Error logs the transferred message in the error level.
Parameter:

[in]: Message Message to be transferred

[in]: FunctionName of the function in which the log entry is made. If it is not specified, an empty
string is displayed in the log.

[in]: Line Source text lines to be logged. If it is not specified, the value 0 will be displayed in
the log.

§ HRESULT Info ([in] BSTR Message, [in, defaultvalue('''")] BSTR Function,
[in, defaultvalue(0)] long Line)

Info logs the transferred message in the info level.
Parameter:

[in]: Message Message to be transferred

enaio® Page 374

enaio® server-api enaio®

[in]: FunctionName of the function in which the log entry is made. If it is not specified, an empty
string is displayed in the log.

[in]: Line Source text lines to be logged. If it is not specified, the value 0 will be displayed in
the log.
§ HRESULT Init ([in] BSTR FileName, [in, defaultvalue(’'')] BSTR Alias)
Init initializes the logger instance.
Parameter:

[in]: Fi leNameFile name for which all log entries will be made

[in]: Alias Alias of the current library for which logs will be made

§ HRESULT Log ([in] BSTR Message, [in] LogLevelEnum Level, [in,
defaultvalue('")] BSTR FileName, [in, defaultvalue('"')] BSTR Function,
[in, defaultvalue(0)] long Line)

Log logs the transferred message in the specified level.
Parameter:

[in]: Message Message to be transferred
[in]: Level Log level to be applied

[in]: Fi leName Name of the source file from which the log entry came. If it is not specified, an
empty string is displayed in the log.

[in]: FunctionName of the function in which the log entry is made. If it is not specified, an empty
string is displayed in the log.

[in]: Line Source text lines to be logged. If it is not specified, the value 0 will be displayed in
the log.

§ HRESULT MethodEntry ([in] BSTR Message, [in, defaultvalue(''')] BSTR
Function, [in, defaultvalue(0)] long Line)

MethodEntry logs the method entry.
Parameter:

[in]: Message Message to be transferred

[in]: FunctionName of the function in which the log entry is made. If it is not specified, an empty
string is displayed in the log.

[in]: Line Source text lines to be logged. If it is not specified, the value 0 will be displayed in
the log.

§ HRESULT Trace ([in] BSTR Message, [in, defaultvalue(')] BSTR
Function, [in, defaultvalue(0)] long Line)

Trace logs the transferred message in the trace level.
Parameter:

[in]: Message Message to be transferred

[in]: FunctionName of the function in which the log entry is made. If it is not specified, an
empty string is displayed in the log.

enaio® Page 375

enaio® server-api enaio®

[in]: Line Source text lines to be logged. If it is not specified, the value 0 will be displayed in
the log.

INotifyErrors

Description:

INotifyErrors is an interface for managing errors of a notification. This interface extends the
IErrors interface by adding the possibility to add error messages to the collection or remove them.

import "OxSvrSpt.idl"”
Public methods:

HRESULT Add ([in] BSTR SourceName, [in] long ISourceCode, [in] BSTR
FaultString, [in] long FaultCode, [in] BSTR InfolList)

HRESULT Clear
HRESULT NewResultCode ([in] long newValue)
HRESULT NewResponseResult ([in] long newValue)

Documentation of the element functions:

§ HRESULT Add ([in] BSTR SourceName, [in] long lSourceCode, [in] BSTR
FaultString, [in] long FaultCode, [in] BSTR InfolList)

Add adds a new error message to the collection.
Parameter:

[in]: SourceName Name of the source in which the error occurred

[in]: 1SourceCode Source line in which the error occurred.

[in]: FaultString Error description

[in]: FaultCode Error code

[in]: InfoListlInfo list

§ HRESULT Clear O
Clear removes all error objects from the collection.

§ HRESULT NewResponseResult ([in] long newValue)
NewResponseResul t sets the return value of the notification.
Parameter:

[out]: newval Return value for the notification

§ HRESULT NewResultCode ([in] long newValue)
NewResultCode sets the error value of the notification.

Parameter:

[out]: newval Error value of the server

INotifylnputFileParameters
Description:

enaio® Page 376

enaio® server-api enaio®

INotifylnputFileParameters contains the input file parameters of a notification.

import "OxSvrSpt.idl"”

INotifylnputParameters
Description:

INotifylnputParameters is a collection for managing the input parameters of a notification.
The methods correspond to the 10utputParameters interface.

import "OxSvrSpt.idl"”

INotifyJob

Description:

INotifyJob contains the data when invoking a notification.

import "OxSvrSpt.idl"”

Properties:

INotifyOutputParameters OutputParameters [get]

INotifyErrors Errors [get]

INotifylnputParameters InputParameters [get]

BSTR Name [get]

INotifyOutputFileParameters OutputFileParameters [get]

INotifylnputFileParameters InputFileParameters [get]

long UserData [get, set]

Documentation of properties:

§ INotifyErrors Errors [get]
Errors returns the collection in which errors are recorded.
Parameter:

[out]: pval (VB return parameter) INotifyErrors collection

§ INotifylnputFileParameters InputFileParameters [get]

InputFileParameters returns the collection of file parameters transferred to the
notification.

Parameter:

[out]: pval (VB return parameter) INotifylnputFileParameters collection

§ INotifylnputParameters InputParameters [get]
InputParameters returns the collection of parameters transferred to the notification.
Parameter:

[out]: pval (VB return parameter) INotifylInputParameters collection

§ BSTR Name [get]

enaio® Page 377

enaio® server-api enaio®

Name returns the name of the notification.
Parameter:

[out]: pval (VB return parameter) Name of the notification

§ [INotifyOutputFileParameters OutputFileParameters [get]
OutputFi leParameters returns the collection of output file parameters.
Parameter:

[out]: pval (VB return parameter) INotifyOutputFileParameters collection
§ [INotifyOutputParameters OutputParameters [get]
OutputParameters returns the collection of output parameters.
Parameter:

[out]: pval (VB return parameter) INotifyOutputParameters collection
§ long UserData [get, set]

UserData returns and sets the user data of the notification.

Parameter:

[out]: pval (VB return parameter) User data of the notification

[in]: newval User data of the notification

INotifyOutputFileParameters
Description:

INotifyOutputFileParameters is a collection for managing the output file parameters of a
notification.

import "OxSvrSpt.idl"

INotifyOutputParameters
Description:

INotifyOutputParameters is a collection for creating and managing the OutputParameters
of a notification.

import "OxSvrSpt.idl"

IOutputFileParameters
Description:

I0utputFileParameters contains the file parameters after a server job call.

import "OxSvrSpt.idl"

enaio® Page 378

enaio® server-api

h 4

OutputFileParameters

Count # —)o

Item(#) @ D
Item(S) @ D

L% S

Properties:
long Count [get]
IFileParameter Item([in] VARIANT Index) [get]
Documentation of properties:
§ long Count [get]
Count returns the number of items of the collection.
Parameter:
[out]: pINumber (VB return value) Number of elements in the collection.
§ IFileParameter ltem([in] VARIANT Index) [get]
Item returns the specified item of the collection using the key or its position.

If a position is specified outside of the valid index, an error with the error value
errCollectionlndexOutOfRange is returned. If the item cannot be found, an error
with the error value errCollectionltemNotFound is returned.

Parameter:
[in]: Index Position and name of the requested element.

[out]: ppltem (VB return value) associated Fi leParameter object.

|OutputParameters
Description:

I0utputParameters is a collection for managing the OutputParameters of a job.

import "OxSvrSpt.idl"

OutputParametersD > Count# —)o
7 3
Item(#) @ D
Item(S) @ D
\ J
Properties:

long Count [get]
IFileParameter Item([in] VARIANT Index) [get]

Documentation of properties:
§ long Count [get]

enaio® Page 379

enaio®

enaio® server-api enaio®

Count returns the number of items of the collection.
Parameter:
[out]: pINumber (VB return value) Number of elements in the collection.
§ IFileParameter Iltem([in] VARIANT Index) [get]
Item returns the specified item of the collection using the key or its position.
If a position is specified outside of the valid index, an error with the error value

errCollectionlndexOutOfRange is returned. If the item cannot be found, an error
with the error value errCol lectionltemNotFound is returned.

Parameter:
[in]: Index Position and name of the requested element.

[out]: ppltem (VB return value) associated Fi leParameter object.

IParameter
Description:

IParameter represents both an input parameter and an output parameter of a job.

The 1Parameter interface provides methods for accessing the properties of a parameter. The
methods are divided into two groups. The first group is available for all parameter types. The
second group is only available for parameters of the binary type.

Name, type and value belong to the first group. They represent the easiest access to the parameter
object. Name and type are only available as read-only properties. The value property can also be
modified subsequently. Depending on the parameter type, values passed to this property are treated
differently. In the process, no validation takes place whether the passed value corresponds to the
requested variant type. Instead, it is attempted to convert the passed value into this type. This is
done using the COM conversion functions of the variant. If the conversion fails, the respective
COM error is thrown. The used target types are listed in the value property. When setting the value

property
All other methods belong to the second group. They are used for processing the binary data of the

parameter. If one of these methods is called for a non-binary parameter, the
errParameterMethodUnsupported error is thrown.

enaio® Page 380

enaio® server-api ‘ enaio®

Value *D

Type #

XML S

ActualSize #

GetChunk *

v
y

Stream @

r
o4

n'a

AppendChunk (*)

i
A

ResetStream

N
7

ClearStream

Public methods:
HRESULT Stream ([out, retval] IStream ** ppStream)
HRESULT AppendChunk ([in] VARIANT Data)
HRESULT GetChunk ([in] long Length, [out, retval] VARIANT * pResult)
HRESULT ResetStream ()
HRESULT ClearStream ()
Properties:
VARIANT Value [get, set]
BSTR Name [get]
long ActualSize [get]
BSTR XML [get, set]
ParameterTypeEnum Type [get]
Documentation of the element functions:
§ HRESULT AppendChunk ([in] VARIANT Data)
AppendChunk appends additional bytes to the stream of the parameter.

This method is only available for parameters of the types ptBinary and ptXML.

After invoking this method, the position pointer of the internal stream is at the end of the
stream.

enaio® Page 381

enaio® server-api enaio®

Parameter:

[in]: Data contains the data that will be appended to the stream

The data will be converted to VT_ARRA]VT_UI1 and further processed using the OLE32
ChangeType method. If, for example, a BSTR is passed, the data will be processed as WIDECHAR.
Writing 8-bit characters into the stream can be done with the methods of the He Iper-COM object.

Examples:
VB

Dim abWriteData() As Byte
ReDim abWriteData(0O To 5)
abWriteData(0)
abWriteData(l)
abWriteData(2)
abWriteData(3)
abWriteData(4)
abWriteData(b)
oParameter.AppendChunk abWriteData

§ HRESULT ClearStream ()
ClearStream deletes the data of the stream.

§ HRESULT GetChunk ([in] long Length, [out, retval] VARIANT * pResult)
GetChunk returns the specified number of bytes from the stream.

L1 L L I T A1 |
ArWNEFLO

This method is only available for parameters of the types ptBinary and ptXML.

This method starts reading the data in the stream beginning at the current position. If the end of
the stream is reached before the required number of characters was read, only those characters
read so far will be returned. The number of read characters can be determined with the size of
the returned buffer (see example).

Parameter:
[in]: Length Number of maximum returned bytes.

[out]: pResult (VB return parameter) contains the bytes read. These will be returned in a
variant of type VT_ARRAY |VT_UI1.

Example:
VB

The following program section corresponds to:

Dim var

var = oParameter._Value

However, the current position of the stream is also preserved there
Set stream to read at the starting position

oParameter .ResetStream

Dim abReadData() As Byte

" Adapt array to the required size

ReDim abReadData(0 To oParameter.ActualSize - 1)

" Read data

abReadData = oParameter.GetChunk(oParameter.ActualSize)

" Determine the size of the data read using the data returned
Dim nSize As Long

nSize = UBound(abReadData) - LBound(abReadData)

§ HRESULT ResetStream ()
ResetStream resets the data stream to the beginning.

enaio® Page 382

enaio® server-api enaio®

This method is only available for parameters of the types ptBinary and ptXML.
§ HRESULT Stream (Jout, retval] IStream ** ppStream)

Stream provides the stream of binary data

This property is only available for parameters of the types ptBinary and ptXML.

The stream contains the binary data of the respective parameter. The data must not be encoded
or decoded in MIME-BASEG64 format by the caller. This is done automatically by the OxSvrSpt
library.

Parameter:
[out]: ppStream (VB return parameter) contains the stream as 1Stream interface.

Documentation of properties:
§ long ActualSize [get]
ActualSize returns the size of the data stream in bytes.
This method is only available for parameters of the types ptBinary and ptXML.
Parameter:
[out]: pval (VB return parameter) contains the size of the data stream.
§ BSTR Name [get]
Name returns the name of the parameter.
Parameter:
[out]: pval (VB return parameter) Name of the file
§ ParameterTypeEnum Type [get]
Type returns the type of the parameter.
The following types are available:
ptString =1
ptinteger =2
ptBoolean =3
ptDouble =4
ptDateTime =5
ptBinary =6
ptXML = 6

The ptBinary and ptXML parameters relate to the Base64 parameter of the server. They only
differ in how they are created.

Parameter:
[out]: pval (VB return parameter) Type of parameter
§ VARIANT Value [get, set]

Value returns the parameter value for non-Base64 parameters and sets the value of this
parameter.

enaio® Page 383

enaio® server-api enaio®

This property is not available for parameters of the Base64 type. Instead, decoded binary data
can be accessed directly with the Stream and Chunk functions. Furthermore, the XML property
is an option.

For parameters of the Base64 type, it is possible to access data with the Stream and Chunk
functionalities.

When setting the property, an attempt is being made to convert the transferred value of the
variant into the required type. The following types can be used as target types:

ptString - VT_BSTR ptlnteger - VT_14 ptBoolean - VT_BOOL ptDouble -
VT_R8 ptDateTime - VT_DATE ptBase64 - VT_ARRAY | VT_Ul1l

Parameter:
[in]: newval New value of the parameter

For parameters of the Base64 type, binary data is returned in the return variant as an Array. The
position pointer of the Stream remains unchanged when invoking this property.

The type of the returned variant depends on the parameter type.
The following types can be used:

ptString - VT_BSTR ptlnteger - VT_14 ptBoolean - VT_BOOL ptDouble - VT_RS8
ptDateTime - VT_DATE ptBinary - VT_ARRAY | VT_UI1l ptXML - VT_ARRAY |
VT_Ul1l

Parameter:
[out]: pval (VB return parameter) contains the value of the parameter
§ BSTR XML [get, set]

XML returns the value of the Base64 parameter as an XML string and sets the value of the Base64
parameter based on the XML string to be transferred.

This method is only available for parameters of the types ptBinary and ptXML.
The output XML string is read out with the XML parser.

If no valid XML string can be generated from the data, an error is sent. The error message is
related to the XML parser used for the validation (MS-XML4).

The position pointer of the Stream remains unchanged when invoking this property.
Parameter:

[out]: pval (VB return parameter) contains the data decoded as an XML string.
Example:

VB

enaio® Page 384

enaio® server-api enaio®

option explicit

Dim oServer, oSession, oJob, olnputParameters, oByteParameter

Set oServer = CreateObject(*'OxsvrSpt.Server')

Set oSession = oServer.Login()

set oJob = oSession._NewJob(*'med.ObservationValues')

Set olnputParameters = oJob. InputParameters

set oByteParameter = olnputParameters.AddNewByteParameter ('Parametername’)
oByteParameter.XML = "<?xml version="1.0" encoding="utf-8"7>" + _
"<med>any test with umlauts aéul</med>"

oByteParameter .ResetStream

" Read data out again using MSXML

Dim oDocument, bSuccess

Set oDocument = CreateObject(**"MSXML.DOMDocument')
bSuccess = oDocument.Load(oByteParameter.Stream)
" Read out and output XML text from the DOM
MsgBox oDocument. XML

This property is only available for parameters of the Base64 type.

In the process, the transferred XML string is passed to the Stream made available in the
parameter object. The specified coding in the XML file is automatically respected.

Old data of the Stream will be overwritten when invoking this property. After invoking this
property, the position pointer of the Stream is at the beginning of it.

The passed data will be validated during conversion. If data non-compliant with XML are
passed, an error will be sent. In this case, the Stream has the length 0. The error message is
related to the XML parser used for the validation (MS-XML4).

Parameter:

[in]: newval Basic string with XML data.
Example:

VB

Dim oParameter As OxSvrSpt.Parameter

oParameter_XML = "<xml version="1.0" encoding="utf-8"?>" +
"<med>any test with umlauts aéulR</med>"

IProperties
Description:

IProperties is a collection for properties.

import "OxSvrSpt.idl"

enaio® Page 385

enaio® server-api enaio®

Properties D

Count#

> Refresh
s N

oo [I
item(S) @ D Value *

—

Public methods:

HRESULT Refresh ()

Properties:

long Count [get]

IProperty ltem([in] VARIANT Index) [get]
Documentation of the element functions:

§ HRESULT Refresh (O

Refresh refreshes the Property collection. All entries of this collection will be generated again
in the process.

Properties documentation:
§ long Count [get]
Count returns the number of items of the collection.
Parameter:
[out]: pINumber (VB return value) Number of elements in the collection.
§ 1Property Item([in] VARIANT Index) [get]
Item returns the specified item of the collection using the key or its position.

If a position is specified outside of the valid index, an error with the error value
errCollectionlndexOutOfRange is returned. If the item cannot be found, an error
with the error value errCollectionltemNotFound is returned.

Parameter:
[in]: Index Position and name of the requested element.

[out]: ppltem (VB return value) associated Fi leParameter object.

IProperty
Description:

IProperty represents a property.

import "OxSvrSpt.idl"

enaio® Page 386

enaio® server-api enaio®

Properties D
Count#
> Refresh
- N
remy 00 | | —
Item(3) @ D Value *
——
Properties:

VARIANT Value [get, set]
BSTR Name [get]
Documentation of properties:
§ BSTR Name [get]
Name returns a name of the property.
Parameter:
[out]: pval (VB return value) Name of the property.
§ VARIANT Value [get, set]

Value returns and sets the value of a property. This property is a default property of the
IProperty interface.

Parameter:
[out]: pval (VB return value) Value of the property.
[in]: val Value of the property.

IServer
Description:

IServer is the central entry point of the library. It is the only creatable object in the hierarchy for
accessing the server.

import "OxSvrSpt.idl"

enaio® Page 387

enaio® server-api enaio®

OxSvrSpt

- [ReadStringFromStreamAsAscii §]
[WriteStringToStreamAsAscii]

[OpenSession @ Errors @

[Login @ Properties@ D

Public methods:

HRESULT Login ([in, defaultvalue(''")] BSTR User, [in, defaultvalue('")]
BSTR Password, [in, defaultvalue('"")] BSTR Server, [in, defaultvalue(')]
BSTR Port, [in, defaultvalue(pwNotEncrypted)] PasswortTypeEnum
PasswortType, [in, defaultvalue()] VARIANT_BOOL DefaultSession, [out,
retval] ISession ** ppSession)

HRESULT Connect ([in, defaultvalue(*localhost™)] BSTR Server, [in,
defaultvalue(*'4000")] BSTR Port)

HRESULT OpenSession ([in, defaultvalue('"")] BSTR SessionGUID, [in,
defaultvalue('"")] BSTR Alias, [out, retval] ISession ** ppSession)

HRESULT LoginBalanced ([in, defaultvalue('"")] BSTR User, [in,
defaultvalue('''")] BSTR Password, [in, defaultvalue('"")] BSTR ServerList,
[in, defaultvalue(pwNotEncrypted)] PasswortTypeEnum PasswortType, [in,
defaultvalue()] VARIANT_BOOL DefaultSession, [out, retval] ISession **
ppSession)

HRESULT LoginGUID ([in, defaultvalue('"")] BSTR GUID, [in,
defaultvalue(''")] BSTR Server, [in, defaultvalue(’"")] BSTR Port, [in,
defaultvalue()] VARIANT _BOOL DefaultSession, [out, retval] ISession **
ppSession)

Properties:
IProperties Properties [get]
IErrors Errors [get]

Documentation of the element functions:

enaio® Page 388

enaio® server-api enaio®

§ HRESULT Connect ([in, defaultvalue(*"localhost)] BSTR Server, [in,
defaultvalue(*'4000'")] BSTR Port)

Connect establishes a connection to the specified servers.
This method currently returns the error E_NOT IMPL.

Establishing a connection to a server without a login is necessary when the server properties are
required. After Connect, they will be available in Properties. If none of these data is
required, it is not necessary to establish a connection to the server with Connect before logging
in. In this case, server data can be specified directly when logging in.

Parameter:

[in]: Server (Default value is localhost) IP address or name of the server to which the
connection will be established

[in]: Port (Default value is 4000) Server port

§ HRESULT Login ([in, defaultvalue(’")] BSTR User, [in,
defaultvalue(''"")] BSTR Password, [in, defaultvalue(''*)] BSTR Server,
[in, defaultvalue(’"")] BSTR Port, [in, defaultvalue(pwNotEncrypted)]
PasswortTypeEnum PasswortType, [in, defaultvalue()] VARIANT_BOOL
DefaultSession, [out, retval] ISession ** ppSession)

Login performs a login at the server and returns the related session.

If a connection to the server was already established using the Connect method before the
Login call, the connection data of Connect is used for Login in case none were specified.

If both the user parameter and the password parameter are empty when passed or passed with
an empty string, an attempt is being made to perform the login automatically using Login. The
automatic login must be activated in the enaio® administrator and must not be compared to the
NTLM authentication.

Parameter:
[in]: User User account
[in]: PasswordPassword of the user account to be used
[in]: Server P address or name of the server to which the connection will be established
[in]: Port Server port

[in]: PasswordType indicates whether the password transferred is already encrypted. If this
parameter is not specified, it is assumed that the password was transferred in an unencrypted form.

[in]: DefaultSession(default value is VARIANT _FALSE) indicates whether this is the session to
which the user can add themselves later using OpenSession.

[out]: ppSession (VB return parameter) created session for the account.
Exception handling:

errLoginUnknownUser (602) The specified user does not exist.
errLogin3TimesWrong (603) The third login attempt failed.
errLogininvalidPassword (604) The entered password is incorrect.

errLoginLocked (605) The user account is blocked.

enaio® Page 389

enaio® server-api enaio®

§ HRESULT LoginBalanced ([in, defaultvalue('"')] BSTR User, [in,
defaultvalue(''')] BSTR Password, [in, defaultvalue('"")] BSTR
ServerList, [in, defaultvalue(pwNotEncrypted)] PasswortTypeEnum
PasswortType, [in, defaultvalue()] VARIANT BOOL DefaultSession, [out,
retval] ISession ** ppSession)

LoginBalanced performs a login at the server and returns the related session.

If both the user parameter and the password parameter are empty when passed or passed with
an empty string, an attempt is being made to perform the login automatically using Login.

Parameter:
[in]: User User account
[in]: PasswordPassword of the user account to be used

[in]: ServerList List with the servers to which the library should connect. This list has the
following structure: Server1#Port1#Weightingl;Server2#Port2#Weighting2;

Server3#Port3#Weighting3

[in]: PasswordType indicates whether the password transferred is already encrypted. If this
parameter is not specified, it is assumed that the password was transferred in an unencrypted form.

[in]: Defaul tSession(default value is VARIANT_FALSE) indicates whether this is the session to
which the user can add themselves later using OpenSession.

[out]: ppSession (VB return parameter) created session for the account.
Exception handling:

errLoginUnknownUser (602) The specified user does not exist.

errLogin3TimesWrong (603) The third login attempt failed.

errLogininvalidPassword (604) The entered password is incorrect.

errLoginLocked (605) The user account is blocked.

§ HRESULT LoginGUID ([in, defaultvalue(’"")] BSTR GUID, [in,
defaultvalue(''")] BSTR Server, [in, defaultvalue(’"")] BSTR Port, [in,
defaultvalue()] VARIANT_BOOL DefaultSession, [out, retval] ISession **
ppSession)

LoginGUID executes a login using the passed SessionGUID at the server and returns the
related session

Using the SessionGUID, a connection to an existing session at the server is established.
Parameter:

[in]: GUID GUID of the server session with which the Session object should work
[in]: Server P address or name of the server to which the connection will be established
[in]: Port Server port

[in]: Defaul tSession(default value is VARIANT_FALSE) indicates whether this is the session to
which the user can attach themselves later using OpenSession

[out]: ppSession (VB return parameter) created session for the account

enaio® Page 390

enaio® server-api enaio®

Exception handling:

errLoginLocked (605) The user account is blocked.

§ HRESULT OpenSession ([in, defaultvalue(’''*)] BSTR SessionGUID, [in,
defaultvalue("""")] BSTR Alias, [out, retval] ISession ** ppSession)

OpenSession creates a new Session object and connects it to the DefaultSession.
Parameter:

[in]: SessionGUID GUID of the existing session with which the connection will be established
[in]: Alias Any name for the call in order to assign errors or states
[out]: ppSession (VB return parameter) created session for the account

Documentation of properties:

§ 1Errors Errors [get]
Errors returns the error collection with errors occurred during server access.
Parameter:

[out]: pval (VB return value) Error collection
§ IProperties Properties [get]
Properties returns the collection with the server properties

Currently, the following properties are set by the OxSvrSpt library when creating the server
object:

TempDir:

Contains the temporary directory in which file parameters are stored. This directory is initialized
together with the temporary directory of the user.

NotifyNeeded:
is initialized with 0.
If the value is set to a value that is not 0 (or VARIANT_FALSE), the notification support is

activated. In that case, it is possible to process notifications with the event interface of the server
and of the session object.

The specified identifiers correspond to the parameter names.
Parameter:

[out]: pval (VB return parameter) IProperties interface

ISession
Description:

ISession is provided by the Server interface after a successful login. Session represents an open
connection to a server. It allows server job calls.

import "OxSvrSpt.idl"

enaio® Page 391

enaio® server-api enaio®

- [Logout I Createlobsink *]
[Notify I- SetCallBack]

Properties D

A 4

Licenses

A 4

Public methods:

HRESULT Logout ()

HRESULT NewJob ([in] BSTR Name, [out, retval] 1Job ** ppJob)
HRESULT CreateJdobSink (Jout, retval] VARIANT * pJobSink)

HRESULT SetCallBack ([in] long ICallbackType, [in] IDispatch * pUnkSink,
[in] long lUserData)

Properties:

IProperties Properties [get]

ILicenses Licenses [get]

Documentation of the element functions:

§ HRESULT CreateJdobSink (Jout, retval] VARIANT * pJobSink)
CreateJobSink returns the 1JobSink interface which is based on the OxSvrCom library
A detailed description can be found in the documentation of the OxScrCom.dll library.
Parameter:

[out]: pJobSink (VB return parameter) Created 1JobSink interface

§ HRESULT Logout
Logout disconnects the current Session.

After a Session logout, every access to other methods and properties of the Session will
produce the errNoSession error.

Exception handling:

errNoSession (1501) The respective Session is no longer available. This Session was either
closed or the session object was released.

§ HRESULT NewJob ([in] BSTR Name, [out, retval] 1Job ** ppJob)
NewJob generates a new job object with the passed name for the job

enaio® Page 392

enaio® server-api enaio®

Parameter:
[in]: Name Job name. The name consists of the namespace of the job.

[out]: ppJdob (VB return parameter) contains the created Job object

§ HRESULT SetCallBack ([in] long ICallbackType, [in] IDispatch *
puUnkSink, [in] long lUserData)

SetCal IBack sets the 1JobSink interface for callbacks to the related OxSvrCom library
A detailed description can be found in the documentation of the OxScrCom.dll library.
Parameter:
[in]: 1Cal IbackType Documentation 1Cal IbackType
[in]: punkSinkDocumentation punkSunk
[in]: 1UserData Documentation 1UserData
Documentation of properties:
§ ILicenses Licenses [get]
Licenses returns the collection of currently registered licenses.
Parameter:
[out]: pval (VB return value) delivers a COM collection with the licenses
§ IProperties Properties [get]
Properties returns the server and session properties of this object.
Parameter:

[out]: pval (VB return value) returns a COM collection with the associated properties. This
collection contains objects of the 1Property type

Class Hierarchy

_INotificationEvent
IError

IErrors
INotifyErrors
IFileParameter

IHelper

8

§

§

8

8

8

§ l1lInputFileParameters

§ INotifyOutputFileParameters
§ l1lnputParameters

8 INotifyOutputParameters
§ 1Job

§ ILicenses

§

ILogger

enaio® Page 393

enaio® server-api enaio®

INotifyJob
10utputFileParameters
INotifylnputFileParameters
I0utputParameters

I InputParameters
IParameter

IProperties

IProperty

1Server

w w w wWw W W W W W W

ISession

enaio® Page 394

enaio® server-api enaio®

Index

abn.Add 12 DMS.AddRel 113
abn.AddRevisit 22 DMS.AddRelText 114
abn.ChangeRevisitUser 21 DMS.AddRelTextLang 114
abn.CheckOsrevisit 13 DMS.CheckinDocument 51
abn.GetAboGrpList 13 DMS.CheckOutDocument 51
abn.GetDoclList 14 DMS.CheckPermission 106, 107
abn.GetRequestList 16 DMS.CopySD 108
abn.GetUserList 17 DMS.CreateSD 109
abn.NotifyAbonnement 18 DMS.DeleteSD 109
abn.NotifyRequestAbo 18 DMS.DeleteUserData 122
abn.RemoveAboldent 19 DMS.DelPortfolio 119
abn.RemoveAllObjAboNotifyFromUser 19 DMS.DelRel 114
abn.RemoveObjAboNotifyFromUser 20 DMS.DelRelText 115
abn.RemoveODbjRevisitNotifyFromUser 20 DMS.GetObjDef 23, 26, 65, 92, 93, 94, 95,
abn.SetObjRevisitOpen 21 96, 97, 98, 99, 100, 101, 102
abn.UpdateRegAboGrp 19, 21 DMS.GetUserData 122
abn.UpdateRevisit 22, 28 DMS.GetUserDataNames 123
adm.CleanUpConfig 300 DMS.GetXMLJobOptions 52, 53
adm.CleanUpLog 300 DMS.GetXMLSchema 124
adm.EnumServerGroups 301 DMS.IsUserData 123
adm.EnumServers 301 DMS.ModPortfolio 119, 120
adm.GetServerFamilylnfo 302 DMS.ModRel 115
adm.GetServersActivity 302 DMS.ModRelText 115
adm.GetSystemFile 302 DMS.ModRelTextLang 116
adm.GetUserProfile 159 DMS.ReadSD 110
adm.LogdirDeleteFiles 303 DMS.RetrievePortfolios 120
adm.LogdirDownloadFiles 303 DMS.RetrieveRelations 116
adm.LogdirGetInfo 304 DMS.RetrieveRelTexts 117
adm.StoreSystemFile 304 DMS.SetSD 110
adm.StoreUserProfile 162 DMS.SetUserData 123
Administration 253 DMS.UndoCheckOutDocument 52
Administration and History Administration DMS.XMLCopy 58

254 DMS.XMLDelete 53
ado.ExecuteSQL 30 DMS. XMLInsert 54, 62
Batch administration 307 DMS.XMLMove 57
BatchJobs 297 DMS.XMLUpdate 59, 64
cnv. GetexifData 35 Full text engine (Namespace vtx) 187
cnv. Getlcons 35 History Administration 277
cnv. GetPageCount 35 Internal Jobs 181
cnv. GetPicturelnfos 36 krn.AppsEventsEnum 310
cnv. GetRendition 37 krn.AppsEventsSubscribe 310
cnv.AddAnnotations 34 krn.BatchAdd 307
cnv.ConvertDocument 31 krn.BatchChange 308
cnv.CreateSlide 33 krn.BatchEnum 308
CreateLaboratoryReport 137 krn.BatchGetStatistic 309
Date formats 104 krn.BatchRemove 309
Detailed information 87 krn.CheckCrashedServers 311
DMS - search requests and result formats 69 krn.CheckDiskSpace 326
DMS.AddPortfolio 118 krn.CheckServerConnection 311

enaio® Page 395

enaio® server-api enaio®

krn.EnumJobs 320 lic.LicLoginEx 334
krn.EnumModules 324 lic.LicLogout 335
krn.EnumNameSpaces 321 lic.LicLogoutEx 335
krn.GetCounter 330 lic.LicResetData 335
krn.GetFileVersionList 327 lic.LicSetGloballnfo 336
krn.GetNameSpaceParams 321 LoincObservations 132
krn.GetNextIndex 327 LoincResults 129
krn.GetServerinfo 311 LoincUnits 132
krn.GetServerInfoEx 313 LoincViewSets 133
krn.JobThreadBreak 324 Medical Engine (Namespace med) 125
krn.JobThreadGetinfo 324 mng.GetGroupAttributes 150, 151, 152, 153,
krn.LoadExecutor 322 154

krn.MakeBeatPing 313 mng.GetGroupList 155
krn.NameSpaceEnum 322 mng.GetGroupMembers 156
krn.NameSpaceGetinfo 322 mng.GetUserAttributes 156
krn.NameSpaceGetJobsinfo 323 mng.GetUserGroups 158, 159, 160, 161
krn.ProcessGetInformation 329 mng.GetUserList 158
krn.QueueEnum 325 ObservationInsert 138
krn.QueueGetParams 325 ObservationRequestHistory 140
krn.QueueGetStatistic 326 ObservationResultHistory 139
krn.REBackup 305 ObservationValues 141
krn.RefillServerList 313 ocr.DoDocOCR 163
krn.REGetCurrentSchema 306 ocr.DOOCR 163
krn.REGetRegValue 306 Other jobs 286

krn.RELoad 306 OxSvrSpt

krn.ReloadExecutor 323 _INotificationEvents 353
krn.RESave 306 IError 354

krn.RESetRegValue 307 IErrors 355

krn.RunScript 327, 328 IFileParameter 357
krn.SendAdminMail 328 IHelper 361

krn.SendMail 328 IInputFileParameters 362
krn.SendMessageToClients 329 IInputParameters 364
krn.SessionAttach 314 IJob 370

krn.SessionDeleteLost 315 ILicenses 373

krn.SessionDrop 315 ILogger 374
krn.SessionDropDB 315 INotifyErrors 377
krn.SessionEnum 315 INotifylnputFileParameters 377
krn.SessionEnumDB 316 INotifylnputParameters 378
krn.SessionEnumResourcesDB 316 INotifyJob 378
krn.SessionGetinfo 316 INotifyOutputFileParameters 379
krn.SessionLogin 317 INotifyOutputParameters 379
krn.SessionLogout 317 IOutputFileParameters 379
krn.SessionPropertiesEnum 318 IOutputParameters 380
krn.SessionPropertiesGet 318 IParameter 381
krn.SessionPropertiesSet 319 IProperties 386

krn.ShutDown 314 IProperty 387
krn.UnloadExecutor 323 IServer 388
krn.UserSessionCreate 319 ISession 392
krn.UserSessionDelete 320 Parameterization of search requests 85
lic.CheckLicense 331 PatientData 133
lic.LicCopyDefault 331 Registry administration 305
lic.LicFreeResource 331 SaveMedicalRecord 143
lic.LicGetGloballnfo 332 Search conditions 77
lic.LicGetGloballnfoEx 332 Server administration 310
lic.LicGetModulelnfo 333 ServerCommunicationJobs 298
lic.LicGetQueueStatus 333 Server-internal jobs 297
lic.LicLogin 334 Session administration 314

enaio® Page 396

enaio® server-api

Standard - Engine (Namespace std) 164
std.CalcDocumentDigest 170
std.CheckSource 182
std.CleanUpCache 164
std.ClearFromCache 165
std.ConfigVarc 182
std.DeleteDocument 172
std.DeleteDocumentVersion 171
std.DeleteObject 171
std.DeleteRemark 172
std.DiskSpace 183

std.DoArchive 165

std.DoPrefetch 165

std.FileTransfer 183
std.GetDocStatistics 173
std.GetDocStream 173
std.GetDocumentDigest 170, 172, 173
std.GetDocumentPage 174
std.GetDocumentStream 174
std.GetDocVersion 175, 176
std.GetObjectinfo 176
std.GetRemark 176
std.GetSignedDocument 177
std.IndexDataChanged 184, 185
std.MergeDocuments 177
std.MergeFolder 178
std.MoveToCache 166
std.ObjectTransfer 181
std.PackDirectory 180, 181, 185, 186
std.RestoreDocVersion 178
std.RestoreObject 178
std.SetHistory 179

std.StoreInCache 167
std.StorelnCacheByID 167
std.StorelnCacheDirect 168
std.StoreInWork 168
std.StoreRemark 179
std.StoreSignedDocument 179

std. TransformIndexData 185
std.UndoArchive 169
std.Unknown2Known 180

System fields 102

UpdatePatientld 138

UpdateVisitld 138
vtx.CleanupClient 187
vtx.CloseQuery 188
vix.GetDocument 188
vix.GetEngineName 188, 189, 190
vitx.OpenObjectQuery 190
vitx.OpenWordListQuery 192
wfm.AdminDeleteProcesses 254, 255
wfm.AdminGetActivityVariables 255
wfm.AdminGetLocklInfo 270
wfm.AdminGetProcessActivities 256
wfm.AdminGetProcessList 258
wfm.AdminGetProcessListByRole 259
wfm.AdminGetProcessListByUser 261

enaio® Page 397

enaio®

wfm.AdminGetProcessLocks 272
wfm.AdminGetProcessReport 273, 274, 275,
276
wfm.AdminGetRoleProcesses 263
wfm.AdminGetUserProcesses 264
wfm.AdminGetWorkerqueue 271
wfm.AdminGetWorkflowList 264, 265, 266
wfm.AdminReleaseLock 273
wfm.AdminRollbackProcess 266
wfm.AdminSaveActivityVariables 267, 268
wfm.AdminSuspendActivity 268, 269, 270
wfm.CancelWorkltem 221
wfm.ChangeWorkflowState 201
wfm.CheckJob 297
wfm.CompleteWorkltem 221, 293, 295
wfm.ConfigUserAbsence 193
wfm.ConvertExportFile 286
wfm.CopyWorkflow 202
wfm.CreateProcessinstance 224
wfm.DBCommands 297
wfm.DeleteEvent 244
wfm.DeleteMasks 244
wfm.DeleteOrganization 194
wfm.DeleteScript 244
wfm.DeleteSysClienttypes 292
wfm.DeleteWorkflow 203
wfm.Export 287
wfm.GetAbsentUsers 194
wfm.GetActivityPerformers 225
wfm.GetEvents 245
wfm.GetEventTypes 246
wfm.GetGlobalScripts 247
wfm.GetHistActivitiesByProcess 277
wfm.GetHistEntries 278
wfm.GetHistProcessList 279
wfm.GetHistTimerEntries 280
wfm.GetHistTimersByProcess 281
wfm.GetHistVariablesByHistEntry 282
wfm.GetHistWorkflowList 282
wfm.GetHistWorkltemRelActivitiesByProces
s 283
wfm.GetHistWorkltemRelEntriesByActivity
284
wfm.GetHistWorkltemRelEntriesByUser 285
wfm.GetHistWorkltemRelUsersByProcess
285
wfm.GetOrganizationClasses 195
wfm.GetOrganizationObjects 196
wfm.GetOrganizations 198
wfm.GetProcessList 225, 226, 227
wfm.GetProcessProtocol 228
wfm.GetProcessResponsibles 228
wfm.GetRunningActivities 229
wfm.GetSubstitutes 198, 199
wfm.GetSysClienttypes 291, 292
wfm.GetVersionlnfo 288
wfm.GetWFMInfo 288

enaio® server-api

wfm.GetWorkflow 203
wfm.GetWorkflowData 204
wfm.GetWorkflowlnfo 205
wfm.GetWorkflowList 205
wfm.GetWorkflowListByFamily 206
wfm.GetWorkltem 238
wfm.GetWorkltemList 230
wfm.GetWorkltemParams 232
wfm.Import 289
wfm.LoadMasks 248
wfm.LoadScript 250
wfm.SaveEvent 250
wfm.SaveMasks 251
wfm.SaveOrganization 200
wfm.SaveScript 252

enaio®

Page 398

enaio®

wfm.ServerNotifyClients 298
wfm.ServerUpdateWorkflowModels 298
wfm.ServerUserAbsent 299
wfm.SetActiveOrganization 200
wfm.SetActivityPerformers 235
wfm.SetEventScriptRelation 253
wfm.SetProcessResponsibles 236
wfm.SetSubstitutes 201
wfm.StartProcess 236
wfm.StartWorkltem 237
wfm.StoreWorkflow 207
wfm.ValidateWorkflow 208
wfm.WorkerJob 298
wfm.WorkltemNoti 298

Workflow - Engine (Namespace wfm) 193

	enaio® server-api
	Introduction
	Engine
	Server Job

	Interface Libraries
	Java Interface

	Realization of Archive Integration
	General

	Test Options
	Test Application axlabjobs.exe

	Glossary

	enaio® Server API Engine Directory
	enaio® Server API Engine Documentation
	Subscription Engine (Namespace abn)
	abn.Add
	abn.CheckOsrevisit
	abn.GetAboGrpList
	abn.GetDocList
	abn.GetUnreadAboCount
	abn.GetGroupList
	abn.GetRequestList
	abn.GetUserList
	abn.NotifyAbonnement
	abn.Remove
	abn.RemoveAboIdent
	abn.UpdateReqAboGrp
	abn.RemoveAllObjAboNotifyFromUser
	abn.RemoveObjAboNotifyFromUser
	abn.ConfirmAboRead
	abn.RemoveObjRevisitNotifyFromUser
	abn.SetObjRevisitClosed
	abn.SetObjRevisitOpen
	abn.ChangeRevisitUser
	abn.AddRevisit
	abn.UpdateRevisit
	abn.GetUnreadRevisitCount
	abn.GetSubscriptions
	abn.GetRevisits
	abn.SetOsInformed
	abn.ResetOsInformed
	abn.GetRecentObjects

	ADO Database Engine (Namespace ado)
	ado.ExecuteSQL

	Convert Engine (Namespace cnv)
	cnv.ConvertDocument
	cnv.CreateSlide
	cnv.AddAnnotations
	cnv.GetIcons
	cnv.GetExifData
	cnv.GetPageCount
	cnv.GetPictureInfos
	cnv.GetRendition

	DMS Engine (Namespace dms)
	Areas
	XML Import
	DMS.CheckInDocument
	DMS.CheckOutDocument
	DMS.UndoCheckOutDocument
	DMS.GetXMLJobOptions
	DMS.RestoreIndexdataVersion
	DMS.XMLDelete
	DMS.XMLInsert
	DMS.XMLMove
	DMS.XMLCopy
	DMS.XMLUpdate
	DMS.XMLImport
	DMS.XMLUnknownToKnown
	XML Export (Search)
	DMS.GetObjDef
	DMS.GetObjectTypeByID
	DMS.GetResultList
	DMS.GetObjectDetails
	DMS.GetDeletedObjects
	DMS.GetLinkedObjects
	DMS.GetForeignObjects
	DMS.SelectDistinctFieldValues
	DMS.GetUserTrayObjects
	DMS.GetWorkflowObjects
	DMS.ExecuteStoredQuery
	DMS.GetStoredQuery
	DMS.AddStoredQuery
	DMS.UpdateStoredQuery
	DMS.RemoveStoredQuery
	DMS.ConvertQuery
	DMS.GetObjectHistory
	DMS.GetShadowData
	DMS.GetObjectsByDigest
	DMS Reference
	Security system
	DMS.CheckPermission
	DMS.CheckPermissions
	DMS.CopySD
	DMS.CreateSD
	DMS.DeleteSD
	DMS.ReadSD
	DMS.SetSD
	Relations and Relation Texts
	DMS.AddRel
	DMS.AddRelText
	DMS.AddRelTextLang
	DMS.DelRel
	DMS.DelRelText
	DMS.ModRel
	DMS.ModRelText
	DMS.ModRelTextLang
	DMS.RetrieveRelations
	DMS.RetrieveRelTexts
	Portfolios
	DMS.Addportfolio
	DMS.Delportfolio
	DMS.RemoveFromportfolio
	DMS.Modportfolio
	DMS.Retrieveportfolios
	User-Related data
	DMS.DeleteUserData
	DMS.GetUserData
	DMS.GetUserDataNames
	DMS.IsUserData
	DMS.SetUserData
	DMS.GetXMLSchema

	Medical Engine (Namespace med)
	med.LoincResults
	med.LoincObservations
	med.LoincUnits
	med.LoincViewSets
	med.PatientData
	med.CreateLaboratoryReport
	med.UpdatePatientId
	med.UpdateVisitId
	med.ObservationInsert
	med.ObservationResultHistory
	med.ObservationRequestHistory
	med.ObservationValues
	med.SaveMedicalRecord
	med.GetMedicalRecord
	med.NotifyMedicalRecord
	med.GetSystemOID

	MNG Engine (Namespace mng)
	mng.AddUserGroupAsc
	mng.CreateGroup
	mng.CreateUser
	mng.DeleteGroup
	mng.DeleteUser
	mng.EmptyGroup
	mng.GetGroupAttributes
	mng.GetGroupList
	mng.GetGroupMembers
	mng.GetUserAttributes
	mng.GetUserGroups
	mng.GetUserList
	mng.GetUserProfile
	mng.RemoveUserGroupAsc
	mng.SetGroupAttributes
	mng.SetUserAttributes
	mng.StoreUserProfile

	OCR Engine (Namespace ocr)
	ocr.DoOCR
	ocr.DoDocOCR

	Standard Engine (Namespace std)
	Work, Cache and Archive Management
	std.CleanUpCache
	std.ClearFromCache
	std.DoArchive
	std.DoPrefetch
	std.GetDocumentSlide
	std.MoveToCache
	std.StoreInCache
	std.StoreInCacheByID
	std.StoreInCacheDirect
	std.StoreInWork
	std.UndoArchive
	File administration
	std.FindDocumentDigest
	std.CalcDocumentDigest
	std.DeleteDocumentVersion
	std.DeleteObject
	std.DeleteDocument
	std.DeleteRemark
	std.FindDocumentDigest
	std.GetDocStatistics
	std.GetDocStream
	std.GetDocumentDigest
	std.GetDocumentPage
	std.GetDocumentStream
	std.GetDocVariant
	std.SetActiveVariant
	std.GetDocVersion
	std.GetObjectInfo
	std.GetRemark
	std.GetSignedDocument
	std.MergeDocuments
	std.MergeFolder
	std.RestoreDocVersion
	std.RestoreObject
	std.SetHistory
	std.StoreRemark
	std.StoreSignedDocument
	std.Unknown2Known
	std.SetPlannedRetention
	std.AdjustRetention
	Internal Jobs
	std.ObjectTransfer
	Other jobs
	std.CheckSource
	std.ConfigVarc
	std.DiskSpace
	std.FileTransfer
	std. GetTemplates
	std.IndexDataChanged
	std.PackDirectory
	std.TransformIndexData
	std. ZipDocument

	Full-Text Engine (Namespace vtx)
	vtx.CleanupClient
	vtx.CloseQuery
	vtx.GetDocument
	vtx.GetEngineName
	vtx.GetSimilarDMSObjects
	vtx.IsOntologySearchEnabled
	vtx.IsSearchForSimilarDMSObjectsEnabled
	vtx.GetMaxHits
	vtx.OpenObjectQuery
	vtx.OpenWordListQuery

	Workflow Engine (Namespace wfm)
	Areas
	Organizational structure
	wfm.ConfigUserAbsence
	wfm.DeleteOrganisation
	wfm.GetAbsentUsers
	wfm.GetOrganisationClasses
	wfm.GetOrganisationObjects
	wfm.GetOrganisations
	wfm.GetSubstitutes
	wfm.GetUserSubstitutes
	wfm.SaveOrganisation
	wfm.SetActiveOrganisation
	wfm.SetSubstitutes
	workflow model
	wfm.ChangeWorkflowState
	wfm.CopyWorkflow
	wfm.DeleteWorkflow
	wfm.GetWorkflow
	wfm.GetWorkflowData
	wfm.GetWorkflowInfo
	wfm.GetWorkflowList
	wfm.GetWorkflowListByFamily
	wfm.StoreWorkflow
	wfm.ValidateWorkflow
	Workflow Process and Process Step
	wfm.CancelWorkItem
	wfm.CompleteWorkItem
	wfm.CreateProcessInstance
	wfm.GetActivityPerformers
	wfm.GetProcessFile
	wfm.GetProcessList
	wfm.GetProcessListByObject
	wfm.GetProcessProtocol
	wfm.GetProcessResponsibles
	wfm.GetRunningActivities
	wfm.GetWorkItemList
	wfm.GetWorkItemParams
	wfm.SetActivityPerformers
	wfm.SetProcessResponsibles
	wfm.StartProcess
	wfm.StartWorkItem
	wfm.GetWorkItem
	Workflow Form, Event and Script
	wfm.DeleteEvent
	wfm.DeleteMasks
	wfm.DeleteScript
	wfm.GetEvents
	wfm.GetEventTypes
	wfm.GetGlobalScripts
	wfm.LoadMasks
	wfm.LoadScript
	wfm.SaveEvent
	wfm.SaveMasks
	wfm.SaveScript
	wfm.SetEventScriptRelation
	Administration and History Administration
	wfm.AdminDeleteStatisticReports
	wfm.AdminDeleteProcesses
	wfm.AdminGetActivityVariables
	wfm.AdminGetProcessActivities
	wfm.AdminGetProcessList
	wfm.AdminGetProcessListByRole
	wfm.AdminGetProcessListByUser
	wfm.AdminGetRoleProcesses
	wfm.AdminGetUserProcesses
	wfm.AdminGetWorkflowList
	wfm.AdminRequestStatisticReport
	wfm.AdminResumeActivity
	wfm.AdminResumeProcess
	wfm.AdminRollbackProcess
	wfm.AdminSaveActivityVariables
	wfm.AdminSaveReportConfig
	wfm.AdminSuspendActivity
	wfm.AdminSuspendProcess
	wfm.AdminTerminateActivity
	wfm.AdminTerminateProcess
	wfm.AdminGetLockInfo
	wfm.AdminGetWorkerqueue
	wfm.AdminGetProcessLocks
	wfm.AdminReleaseLock
	wfm.AdminGetProcessReport
	wfm.AdminGetStatisticReportConfigs
	wfm.AdminGetStatisticReportData
	wfm.AdminGetStatisticReports
	History Administration
	wfm.GetHistActivitiesByProcess
	wfm.GetHistEntries
	wfm.GetHistProcessList
	wfm.GetHistTimerEntries
	wfm.GetHistTimersByProcess
	wfm.GetHistVariablesByHistEntry
	wfm.GetHistWorkflowList
	wfm.GetHistWorkItemRelActivitiesByProcess
	wfm.GetHistWorkItemRelEntriesByActivity
	wfm.GetHistWorkItemRelUsersByProcess
	wfm.GetHistWorkItemRelEntriesByUser
	Other jobs
	wfm.ConvertExportFile
	wfm.Export
	wfm.GetVersionInfo
	wfm.GetWFMInfo
	wfm.Import
	wfm.GetSysClienttypes
	wfm.InsertSysClienttypes
	wfm.DeleteSysClienttypes
	wfm.GetProjectList
	wfm.AdhocConfigTemplate
	wfm.AdhocGetTemplateList
	Server-internal Jobs
	wfm.DBCommands
	wfm.CheckJob
	wfm.WorkerJob
	wfm.WorkItemNoti
	wfm.ServerNotifyClients
	wfm.ServerUpdateWorkflowModels
	wfm.ServerUserAbsent

	Core Services
	Administration Core Services (Namespace adm)
	adm.CleanUpConfig
	adm.CleanUpLog
	adm.EnumServerGroups
	adm.EnumServers
	adm.GetServerFamilyInfo
	adm.GetServersActivity
	adm.GetSystemFile
	adm.LogdirDeleteFiles
	adm.LogdirDownloadFiles
	adm.LogdirGetInfo
	adm.StoreSystemFile
	Kernel Core Services (Namespace krn)
	Registry Administration
	krn.REBackup
	krn.REGetCurrentSchema
	krn.REGetRegValue
	krn.RELoad
	krn.RESave
	krn.RESetRegValue
	Batch administration
	krn.BatchAdd
	krn.BatchChange
	krn.BatchEnum
	krn.BatchGetStatistic
	krn.BatchRemove
	Server Manager
	krn.AppsEventsEnum
	krn.AppsEventsSubscribe
	krn.CheckCrashedServers
	krn.CheckServerConnection
	krn.GetServerInfo
	krn.GetServerInfoEx
	krn.MakeBeatPing
	krn.RefillServerList
	krn.ShutDown
	Session Administration
	krn.SessionAttach
	krn.SessionDeleteLost
	krn.SessionDrop
	krn.SessionDropDB
	krn.SessionEnum
	krn.SessionEnumDB
	krn.SessionEnumResourcesDB
	krn.SessionGetInfo
	krn.SessionLogin
	krn.SessionLogout
	krn.SessionPropertiesEnum
	krn.SessionPropertiesGet
	krn.SessionPropertiesSet
	krn.UserSessionCreate
	krn.UserSessionDelete
	Engine administration
	krn.EnumJobs
	krn.EnumNameSpaces
	krn.GetNameSpaceParams
	krn.LoadExecutor
	krn.NameSpaceEnum
	krn.NameSpaceGetInfo
	krn.NameSpaceGetJobsInfo
	krn.ReloadExecutor
	krn.UnloadExecutor
	General Administration
	krn.EnumModules
	krn.JobThreadBreak
	krn.JobThreadGetInfo
	krn.QueueEnum
	krn.QueueGetParams
	krn.QueueGetStatistic
	Other jobs
	krn.CheckDiskSpace
	krn.GetFileVersionList
	krn.GetNextIndex
	krn.RunScript
	Krn.EmptyJob
	krn.SendAdminMail
	krn.SendMail
	krn.SendMessageToClients
	krn.ProcessGetInformation
	krn.GetCounter
	License Core Services (Namespace lic)
	lic.CheckLicense
	lic.LicCopyDefault
	lic.LicFreeResource
	lic.LicGetGlobalInfo
	lic.LicGetGlobalInfoEx
	lic.LicGetModuleInfo
	lic.LicGetQueueStatus
	lic.LicLogin
	lic.LicLoginEx
	lic.LicLogout
	lic.LicLogoutEx
	lic.LicResetData
	Data Transfer Services (Namespace dtr)
	dtr.SynchronizeData

	OxSvrSpt
	General Description
	Modules
	Integration of Library
	Registration
	License Management
	Server Events
	XML Processing
	Processing of Binary Data
	Error Handling
	Schema of the Structure
	Adding Watermarks to PDF Documents

	Data Structures
	_INotificationEvents
	IError
	IErrors
	IFileParameter
	IHelper
	IInputFileParameters
	IInputParameters
	IJob
	ILicenses
	ILogger
	INotifyErrors
	INotifyInputFileParameters
	INotifyInputParameters
	INotifyJob
	INotifyOutputFileParameters
	INotifyOutputParameters
	IOutputFileParameters
	IOutputParameters
	IParameter
	IProperties
	IProperty
	IServer
	ISession

	Class Hierarchy

	Index

